就是一个可持久化Trie.......

#include<bits/stdc++.h>
#define N 600005
using namespace std;
inline int read(){
int f=,x=;char ch;
do{ch=getchar();if(ch=='-')f=-;}while(ch<''||ch>'');
do{x=x*+ch-'';ch=getchar();}while(ch>=''&&ch<='');
return f*x;
}
int bin[],n,m,a[N],b[N],rt[N];
struct Trie{
int cnt,c[N*][],sum[N*];
int ins(int x,int val){
int tmp,y;tmp=y=++cnt;
for(int i=;i>=;i--){
c[y][]=c[x][];c[y][]=c[x][];
sum[y]=sum[x]+;
int t=val&bin[i];t>>=i;
x=c[x][t];c[y][t]=++cnt;y=c[y][t];
}
sum[y]=sum[x]+;
return tmp;
}
int query(int l,int r,int val){
int tmp=;
for(int i=;i>=;i--){
int t=val&bin[i];t>>=i;
if(sum[c[r][t^]]-sum[c[l][t^]])
tmp+=bin[i],r=c[r][t^],l=c[l][t^];
else r=c[r][t],l=c[l][t];
}
return tmp;
}
}T;
int main(){
bin[]=;for(int i=;i<=;i++)bin[i]=bin[i-]<<;
n=read();m=read();n++;
for(int i=;i<=n;i++)a[i]=read();
for(int i=;i<=n;i++)b[i]=b[i-]^a[i];
for(int i=;i<=n;i++)rt[i]=T.ins(rt[i-],b[i]);
char s[];int l,r,x;
while(m--){
scanf("%s",s);
if(s[]=='A'){
n++;a[n]=read();b[n]=b[n-]^a[n];
rt[n]=T.ins(rt[n-],b[n]);
}
else{
l=read();r=read();x=read();
printf("%d\n",T.query(rt[l-],rt[r],b[n]^x));
}
}
}

【bzoj3261】最大异或和的更多相关文章

  1. bzoj3261: 最大异或和

    可持久化trie.又是%%%Xs酱... #include<cstdio> #include<cstring> #include<iostream> #includ ...

  2. ⌈洛谷4735⌋⌈BZOJ3261⌋最大异或和【可持久化01Trie】

    题目链接 [BZOJ传送门] [洛谷传送门] 题解 终于学会了可持久化trie树了.感觉并不是特别的难. 因为可持久化,那么我们就考虑动态开点的trie树. 都知道异或操作是有传递性的,那么我们就维护 ...

  3. BZOJ3261最大异或和——主席树

    题目描述 给定一个非负整数序列{a},初始长度为N. 有M个操作,有以下两种操作类型: 1.Ax:添加操作,表示在序列末尾添加一个数x,序列的长度N+1. 2.Qlrx:询问操作,你需要找到一个位置p ...

  4. bzoj3261: 最大异或和 可持久化trie

    题意:给定一个非负整数序列{a},初始长度为N. 有M个操作,有以下两种操作类型: 1.Ax:添加操作,表示在序列末尾添加一个数x,序列的长度N+1. 2.Qlrx:询问操作,你需要找到一个位置p,满 ...

  5. 2018.08.04 bzoj3261: 最大异或和(trie)

    传送门 简单可持久化01trie树. 实际上这东西跟可持久化线段树貌似是一个东西啊. 要维护题目给出的信息,就需要维护前缀异或和并且把它们插入一棵01trie树,然后利用贪心的思想在上面递归就行了,因 ...

  6. bzoj3261: 最大异或和 (可持久化trie树)

    题目链接 题解 看到异或和最大就应该想到01 trie树 我们记\(S_i\)为前i项的异或和 那么我们的目的是最大化\(S_n\)^\(x\)^\(S_{j-1}\) \((l <= j &l ...

  7. 【可持久化Trie】bzoj3261 最大异或和

    对原序列取前缀异或值,变成pre[1...N],然后询问等价于求max{a[N]^x^pre[i]}(l-1<=i<=r-1). #include<cstdio> #defin ...

  8. BZOJ3261: 最大异或和(可持久化trie树)

    题意 题目链接 Sol 设\(sum[i]\)表示\(1 - i\)的异或和 首先把每个询问的\(x \oplus sum[n]\)就变成了询问前缀最大值 可持久化Trie树维护前缀xor,建树的时候 ...

  9. [BZOJ3261] 最大异或和 (异或前缀和,可持久化Trie)

    Description 给定一个非负整数序列{a},初始长度为N. 有M个操作,有以下两种操作类型: 1.Ax:添加操作,表示在序列末尾添加一个数x,序列的长度N+1. 2.Q l r x:询问操作, ...

  10. BZOJ3261 最大异或和 【可持久化trie树】

    题目 给定一个非负整数序列{a},初始长度为N. 有M个操作,有以下两种操作类型: 1.Ax:添加操作,表示在序列末尾添加一个数x,序列的长度N+1. 2.Qlrx:询问操作,你需要找到一个位置p,满 ...

随机推荐

  1. (转)基于CUDA的GPU光线追踪

    作者:Asixa 链接:https://zhuanlan.zhihu.com/p/55855479 来源:知乎 著作权归作者所有.商业转载请联系作者获得授权,非商业转载请注明出处.     替STL. ...

  2. Struts2—整合Spring

    Struts2—整合Spring Spring框架是一个非常优秀的轻量级java EE容器,大部分javaEE应用,都会考虑使用Spring容器来管理应用中的组件. Struts2是一个MVC框架,是 ...

  3. rcnn spp_net

    在http://www.cnblogs.com/jianyingzhou/p/4086578.html中 提到 rcnn开创性工作,但是计算时间太长,重复计算太大. spp_net将重复计算避免了 我 ...

  4. [android]不解锁刷机

    本人因为误操作进入andriod recovery模式,显示failed to boot 2,致手机无法恢复出厂值, 当时那叫一个郁闷.上论坛搜寻无数,唉让刷底包的无数(在此不解释),万恶的刷底包. ...

  5. poi excel导出 xssf 带下拉框

    需求:导出之后带有二级级联的下拉框.(类似于省市). 最初的思路是怀疑是不是数组内串太多了,导出之后的excel有36行,调试的误区在于刚开始认为对行数有限制,后自己写了一个测试类,才发现不是行数,而 ...

  6. 深入研究java.lang.Runtime类(转)

    一.概述      Runtime类封装了运行时的环境.每个 Java 应用程序都有一个 Runtime 类实例,使应用程序能够与其运行的环境相连接.      一般不能实例化一个Runtime对象, ...

  7. [洛谷P2711]小行星

    题目大意:有$n$颗行星,每颗行星的位置是$(x,y,z)$.每次可以消除一个面(即$x,y$或$z$坐标相等)的行星,求消除这些行星的最少次数. 题解:最小割,对于每一颗小行星,从 x 面的出点向  ...

  8. 洛谷 P2414 [NOI2011]阿狸的打字机 解题报告

    P2414 [NOI2011]阿狸的打字机 题目背景 阿狸喜欢收藏各种稀奇古怪的东西,最近他淘到一台老式的打字机. 题目描述 打字机上只有28个按键,分别印有26个小写英文字母和'B'.'P'两个字母 ...

  9. C++——设计与演化——读书笔记

    <<c++设计与演化>>1.c++的保护模式来自于访问权限许可和转让的概念; 初始化和赋值的区分来自于转让能力的思考; c++的const概念是从读写保护机制中演化出来. 2. ...

  10. 【CF edu 30 D. Merge Sort】

    time limit per test 2 seconds memory limit per test 256 megabytes input standard input output standa ...