轻量级CNN模型mobilenet v1
mobilenet v1
论文解读
论文地址:https://arxiv.org/abs/1704.04861
核心思想就是通过depthwise conv替代普通conv.

有关depthwise conv可以参考https://www.cnblogs.com/sdu20112013/p/11759928.html
模型结构:

类似于vgg这种堆叠的结构.
每一层的运算量

可以看到,运算量并不是与参数数量绝对成正比,当然整体趋势而言,参数量更少的模型会运算更快.
代码实现
https://github.com/marvis/pytorch-mobilenet
网络结构:
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
def conv_bn(inp, oup, stride):
return nn.Sequential(
nn.Conv2d(inp, oup, 3, stride, 1, bias=False),
nn.BatchNorm2d(oup),
nn.ReLU(inplace=True)
)
def conv_dw(inp, oup, stride):
return nn.Sequential(
nn.Conv2d(inp, inp, 3, stride, 1, groups=inp, bias=False),
nn.BatchNorm2d(inp),
nn.ReLU(inplace=True),
nn.Conv2d(inp, oup, 1, 1, 0, bias=False),
nn.BatchNorm2d(oup),
nn.ReLU(inplace=True),
)
self.model = nn.Sequential(
conv_bn( 3, 32, 2),
conv_dw( 32, 64, 1),
conv_dw( 64, 128, 2),
conv_dw(128, 128, 1),
conv_dw(128, 256, 2),
conv_dw(256, 256, 1),
conv_dw(256, 512, 2),
conv_dw(512, 512, 1),
conv_dw(512, 512, 1),
conv_dw(512, 512, 1),
conv_dw(512, 512, 1),
conv_dw(512, 512, 1),
conv_dw(512, 1024, 2),
conv_dw(1024, 1024, 1),
nn.AvgPool2d(7),
)
self.fc = nn.Linear(1024, 1000)
def forward(self, x):
x = self.model(x)
x = x.view(-1, 1024)
x = self.fc(x)
return x
参考论文中的结构,第一层是普通的卷积层,后面接的都是可分离卷积.
这里注意groups参数的用法. 当groups=输入channel数目时,即对每个channel分别做卷积.默认groups=1,此时即为普通卷积.

训练伪代码
# create model
model = Net()
# define loss function (criterion) and optimizer
criterion = nn.CrossEntropyLoss().cuda()
optimizer = torch.optim.SGD(model.parameters(), args.lr,
momentum=args.momentum,
weight_decay=args.weight_decay)
# load data
train_loader = torch.utils.data.DataLoader()
# train
for every epoch:
input,target=get_from_data
#前向传播得到预测值
output = model(input_var)
#计算loss
loss = criterion(output, target_var)
#反向传播更新网络参数
optimizer.zero_grad()
loss.backward()
optimizer.step()
轻量级CNN模型mobilenet v1的更多相关文章
- 轻量级CNN模型之squeezenet
SqueezeNet 论文地址:https://arxiv.org/abs/1602.07360 和别的轻量级模型一样,模型的设计目标就是在保证精度的情况下尽量减少模型参数.核心是论文提出的一种叫&q ...
- CNN 模型压缩与加速算法综述
本文由云+社区发表 导语:卷积神经网络日益增长的深度和尺寸为深度学习在移动端的部署带来了巨大的挑战,CNN模型压缩与加速成为了学术界和工业界都重点关注的研究领域之一. 前言 自从AlexNet一举夺得 ...
- 轻量级卷积神经网络——MobileNet
谷歌论文题目: MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications 其他参考: CNN ...
- keras入门(三)搭建CNN模型破解网站验证码
项目介绍 在文章CNN大战验证码中,我们利用TensorFlow搭建了简单的CNN模型来破解某个网站的验证码.验证码如下: 在本文中,我们将会用Keras来搭建一个稍微复杂的CNN模型来破解以上的 ...
- 总结近期CNN模型的发展(一)---- ResNet [1, 2] Wide ResNet [3] ResNeXt [4] DenseNet [5] DPNet [9] NASNet [10] SENet [11] Capsules [12]
总结近期CNN模型的发展(一) from:https://zhuanlan.zhihu.com/p/30746099 余俊 计算机视觉及深度学习 1.前言 好久没有更新专栏了,最近因为项目的原因接 ...
- Farseer.net轻量级ORM开源框架 V1.x 入门篇:新版本说明
导航 目 录:Farseer.net轻量级ORM开源框架 目录 上一篇:没有了 下一篇:Farseer.net轻量级ORM开源框架 V1.x 入门篇:数据库配置 前言 V1.x版本终于到来了.本次 ...
- 经典分类CNN模型系列其五:Inception v2与Inception v3
经典分类CNN模型系列其五:Inception v2与Inception v3 介绍 Inception v2与Inception v3被作者放在了一篇paper里面,因此我们也作为一篇blog来对其 ...
- 从卷积拆分和分组的角度看CNN模型的演化
博客:博客园 | CSDN | blog 写在前面 如题,这篇文章将尝试从卷积拆分的角度看一看各种经典CNN backbone网络module是如何演进的,为了视角的统一,仅分析单条路径上的卷积形式. ...
- 基于Pre-Train的CNN模型的图像分类实验
基于Pre-Train的CNN模型的图像分类实验 MatConvNet工具包提供了好几个在imageNet数据库上训练好的CNN模型,可以利用这个训练好的模型提取图像的特征.本文就利用其中的 “im ...
随机推荐
- 云原生生态周报 Vol. 21 | Traefik 2.0 正式发布
作者 | 浔鸣.心水.元毅.源三.衷源 业界要闻 CNCF 计划将 TOC 升至 11 人 技术监督委员会(TOC)是 CNCF 的三大核心管理机构之一,从 2020 年 1 月起,TOC 将从 9 ...
- linux系统下开发环境安装与配置
安装系统环境 CentOS 6.8 64位 jdk版本 7u80 64位 Tomcat版本 Tomcat7 maven版本 Apache Maven 3.6.0 vsftpd版本 vsftpd-2.2 ...
- Flask中的路由、实例化参数和config配置文件
Flask中的路由 endpoint 别名不能重复,对应的视图函数,默认是视图函数名.endpoint 才是路由的核心.视图函数与路由的对应关系.可以通过url_for 反向创建url # metho ...
- redis分布式锁-基本概念与实现方式对比
1.redis中使用WATCH实现锁机制,是最次之的方式.WATCH只会在数据被其他客户端抢先修改了的情况下,“通知”执行了这个命令的客户端,而不会阻止其他客户端对数据进行修改.此类锁成为“乐观锁” ...
- java虚拟机体系分析
一.JVM的生命周期: 1)程序开始执行,他就运行,程序停止,它就结束.有几个程序在执行,就有几个虚拟机在工作.只要Java虚拟机中还有普通的线程在执行,Java虚拟机就不会停止. 2)Java虚 ...
- 3DEarth PPT :一款专为GIS系统研发的三维汇报演示系统
3DEarth PPT(三维地球汇报演示系统)又称 3DGis PPT,是专为GIS系统研发的三维汇报演示系统.对有3DGis系统的客户它可以作为一个组件(dll)嵌入原系统,对没有3DGis系统的客 ...
- Nginx+PHP7.3.9 Docker镜像制作
最近因项目需要制作了多个版本的php docker镜像,制作过程可谓是一波三折,因基于yum的方式安装php的方式在安装扩展插件时很不方便,不容易找到插件对应的yum源,所以PHP在docker镜像中 ...
- Quartz系列(一):基础介绍
新建一个.NET Core控制台项目,NuGet引用Quartz引用. class Program { static void Main(string[] args) { var task = Tas ...
- Spring MVC拦截器学习
1 介绍 Spring Web MVC是基于Servlet API构建的原始Web框架. 2 拦截器 2.1 定义 springmvc框架的一种拦截机制 2.2 使用 2.2.1 两步走 实现Hand ...
- Nebula 架构剖析系列(一)图数据库的存储设计
摘要 在讨论某个数据库时,存储 ( Storage ) 和计算 ( Query Engine ) 通常是讨论的热点,也是爱好者们了解某个数据库不可或缺的部分.每个数据库都有其独有的存储.计算方式,今天 ...