发表在2018年CVPR。

以下对于一些专业术语的翻译可能有些问题。

摘要

  • 有损压缩是一个优化问题,其优化目标是率失真,优化对象是编码器、量化器和解码器(同时优化)。

    Lossy image compression can be formulated as a joint rate-distortion optimization to learn encoder, quantizer, and decoder.

  • 其中,量化器和离散熵预测(discrete entropy estimation)是不可差分的,因此要将压缩系统用CNN替换是很困难的。

  • 作者认为,我们可以根据图像的局部内容,来决定图像中每一个区域的重要性,从而控制每一个区域的码率分配,从而替换掉离散熵估计。

  • 此外,作者还采用了一个二元机(binarizer)来实现量化功能。为了让二元机在BP过程中可差分,作者引入了一个代理函数(proxy function),在BP中代替二元操作。

  • 此时,编码器、解码器、二元机和权重图是可以端到端优化的。

  • 为了实现无损压缩,作者还引入了卷积熵编码器。

  • 实验发现,在低码率图像压缩条件下,算法的SSIM指标超过了JPEG和JPEG 2000。

故事要点

  • 一个图像压缩系统通常需要包括以下三个组分:编码器(encoder),量化器(quantizer)和解码器(decoder)。这才能组成一个编解码器(codec)。

  • JPEG和JPEG 2000为什么不够好呢【有哪些提升空间呢】?首先,它们都依赖于主观设计的图像变换方法,并且需要对各组分独立优化。从效果上,在低码率压缩时二者表现都很差,会产生模糊、振铃和块效应等。

  • CNN为什么有取而代之的潜力呢?因为:复杂的非线性分析和生成变换过程,都可以用几层CNN实现。此外,CNN结构还可以让编码器和解码器联合优化。

  • 尽管基于深度学习的工作很多,但仍有许多问题亟待解决。首先,我们如何解决量化器的不可差分特性?其次,由于我们的学习目标是 同时最小化 压缩率和失真,因此我们要衡量熵率(entropy rate)。如何 连续地近似 用离散码元定义的 离散熵率?

  • 因此,本文的目标就是解决(1)量化和(2)熵率预测问题。

  • 现有的深度学习方法,为每一个位置都分配相同长度的码元。显然,局部信息量(local informative content)是空域变化的,因此比特率也应该是空域变化的。因此作者提出了一个基于内容权重的重要性图(content-weighted importance map)。其输出一个与输入同尺寸的图。每一个点的值是一个非负数值,指示编码长度。此时,重要性图各点求和,就可以作为压缩率的连续预测,进而作为压缩率控制器。此时,我们就不再需要预测熵率了。

  • 二元机很简单:首先对特征图取sigmoid函数,输出大于0.5的则归为1,否则为0。在反向传播时,该二元机被一个代理函数近似。

  • 此时,整体网络就可以联合优化。如图:

  • 注意:在传统方法中,编码是基于上下文(context)的。为此,作者采用了[14]提出的基于上下文的自适应二进制算术编码方法CABAC,进一步压缩二进制码元和重要性图。

本来我是想看一看重要性图怎么生成的。看到上图就知道了,就是简单的CNN网络。因此方法没再细看。

以我的经验,这种方案最难的是训练。我们直接看看作者怎么训练的。

模型训练

前面提到了,我们要同时最小化压缩率和失真。因此损失函数设为两个加权组合:
\[
loss = MSE + \gamma R
\]
其中,MSE是从解码器解码出来的图像,与原图像的\(L_2\)范数。R是码率损失。作者设置了一个阈值\(r\),若重要性图的求和大于\(r\),则损失为和;否则为0。总的损失是batch中每一张图像损失的总和。

在实际训练时,作者先抛开重要性图,让编码器解码器主体先收敛;然后按三个阶段训练,学习率分别是\(1e^{-4}\)、\(1e^{-5}\)和\(1e^{-6}\)。每个阶段都训练到损失函数不再下降为止。

\(\gamma\)和\(r\)根据需要可调。

Paper | Learning convolutional networks for content-weighted image compression的更多相关文章

  1. Paper | U-Net: Convolutional Networks for Biomedical Image Segmentation

    目录 故事背景 U-Net 具体结构 损失 数据扩充 发表在2015 MICCAI.原本是一篇医学图像分割的论文,但由于U-Net杰出的网络设计,得到了8k+的引用. 摘要 There is larg ...

  2. Paper Reading - Convolutional Sequence to Sequence Learning ( CoRR 2017 ) ★

    Link of the Paper: https://arxiv.org/abs/1705.03122 Motivation: Compared to recurrent layers, convol ...

  3. 【论文笔记】Learning Convolutional Neural Networks for Graphs

    Learning Convolutional Neural Networks for Graphs 2018-01-17  21:41:57 [Introduction] 这篇 paper 是发表在 ...

  4. FlowNet: Learning Optical Flow with Convolutional Networks

    作者:嫩芽33出处:http://www.cnblogs.com/nenya33/p/7122701.html 版权:本文版权归作者和博客园共有 转载:欢迎转载,但未经作者同意,必须保留此段声明:必须 ...

  5. Paper | Densely Connected Convolutional Networks

    目录 黄高老师190919在北航的报告听后感 故事背景 网络结构 Dense block DenseNet 过渡层 成长率 瓶颈层 细节 实验 发表在2017 CVPR. 摘要 Recent work ...

  6. Deep Learning 33:读论文“Densely Connected Convolutional Networks”-------DenseNet 简单理解

    一.读前说明 1.论文"Densely Connected Convolutional Networks"是现在为止效果最好的CNN架构,比Resnet还好,有必要学习一下它为什么 ...

  7. How to do Deep Learning on Graphs with Graph Convolutional Networks

    翻译: How to do Deep Learning on Graphs with Graph Convolutional Networks 什么是图卷积网络 图卷积网络是一个在图上进行操作的神经网 ...

  8. 模型压缩-Learning Efficient Convolutional Networks through Network Slimming

    Zhuang Liu主页:https://liuzhuang13.github.io/ Learning Efficient Convolutional Networks through Networ ...

  9. [论文理解] Learning Efficient Convolutional Networks through Network Slimming

    Learning Efficient Convolutional Networks through Network Slimming 简介 这是我看的第一篇模型压缩方面的论文,应该也算比较出名的一篇吧 ...

随机推荐

  1. Tomcat中session复制技术

    一.准备三台机器主机的服务都正常,nginx与Tomcat构建负载均衡 主机名     IP地址 nginx       192.168.200.111 Tomcat1  192.168.200.11 ...

  2. python中append的使用

    没有系统地学习过python,最近在append的使用上遇到了大问题,吃到了苦头 之前一直单纯地认为通过append把数添加到list中,不需要提前开空间,非常便利,但却没有意识到这个过程并不是值传递 ...

  3. win10系统使用Telnet命令时提示“telnet不是内部或外部命令”

    in10系统使用Telnet命令时提示“telnet不是内部或外部命令”问题的处理方案 win10系统使用的过程中很多用户会遇到使用Telnet命令时提示“telnet不是内部或外部命令”的问题,这样 ...

  4. Codeforces Round #594 (Div. 2) B. Grow The Tree 水题

    B. Grow The Tree Gardener Alexey teaches competitive programming to high school students. To congrat ...

  5. 【Linux】Linux 性能瓶颈阈值分析

    Linux系统资源包括:CPU.IO(磁盘和网络).内存等 利用率达到三个阶段时: 1)50% 引起注意 2)70% 密切关注 3)90% 严重情况 vmstat.sar.iostat.mpstat. ...

  6. _NtCreateDebugObject(ntoskrnl.exe)函数逆向分析

    该函数由 DbgUiConnectToDbg(ntdll.dll)函数 调用. 其调用时传入的参数如下: 函数作用:初始化被调试的内核对象,将被调试对象句柄放入调试对象的 [fs:f24]处. 1.现 ...

  7. 用友的SPS定义

    基于标准产品的支持服务(Standard Product Support,SPS).主要包括:更新升级(软件补丁更新与产品升级).问题解决(产品问题在线或热线解析).知识转移(用友到客户的知识传递). ...

  8. python基础(24):面向对象三大特性一(继承)

    1. 继承 1.1 什么是继承 继承是一种创建新类的方式,在python中,新建的类可以继承一个或多个父类,父类又可称为基类或超类,新建的类称为派生类或子类. python中类的继承分为:单继承和多继 ...

  9. jQuery的选择器总结

    jQuery的选择器 不会返回undefined或null 基本选择器 id选择器:$('#id') element选择器:$('elem') class选择器:$('.class') 通配符选择器: ...

  10. 无法打开“Visual Studio Code”,因为Apple无法检查其是否包含恶意软件。”的问题解决

    解决方法: 1.系统偏好设置==> 安全性与隐私 ===> 在下方允许就可以了. 2.一劳永逸 但是注意安全性 打开terminal 命令行工具输入命令:sudo spctl --mast ...