机器学习基础——梯度下降法(Gradient Descent)
看了coursea的机器学习课,知道了梯度下降法。一开始只是对其做了下简单的了解。随着内容的深入,发现梯度下降法在很多算法中都用的到,除了之前看到的用来处理线性模型,还有BP神经网络等。于是就有了这篇文章。
本文主要讲了梯度下降法的两种迭代思路,随机梯度下降(Stochastic gradient descent)和批量梯度下降(Batch gradient descent)。以及他们在python中的实现。
梯度下降法
梯度下降是一个最优化算法,通俗的来讲也就是沿着梯度下降的方向来求出一个函数的极小值。那么我们在高等数学中学过,对于一些我们了解的函数方程,我们可以对其求一阶导和二阶导,比如说二次函数。可是我们在处理问题的时候遇到的并不都是我们熟悉的函数,并且既然是机器学习就应该让机器自己去学习如何对其进行求解,显然我们需要换一个思路。因此我们采用梯度下降,不断迭代,沿着梯度下降的方向来移动,求出极小值。
此处我们还是用coursea的机器学习课中的案例,假设我们从中介那里拿到了一个地区的房屋售价表,那么在已知房子面积的情况下,如何得知房子的销售价格。显然,这是一个线性模型,房子面积是自变量x,销售价格是因变量y。我们可以用给出的数据画一张图。然后,给出房子的面积,就可以从图中得知房子的售价了。
现在我们的问题就是,针对给出的数据,如何得到一条最拟合的直线。
对于线性模型,如下。
- h(x)是需要拟合的函数。
- J(θ)称为均方误差或cost function。用来衡量训练集众的样本对线性模式的拟合程度。
- m为训练集众样本的个数。
- θ是我们最终需要通过梯度下降法来求得的参数。
J(\theta)=\frac1{2m}\sum_{i=0}^m(y^i-h_\theta(x^i))^2\]
接下来的梯度下降法就有两种不同的迭代思路。
批量梯度下降(Batch gradient descent)
现在我们就要求出J(θ)取到极小值时的\(θ^T\)向量。之前已经说过了,沿着函数梯度的反方向下降就能最快的找到极小值。
- 计算J(θ)关于\(\theta^T\)的偏导数,也就得到了向量中每一个\(\theta\)的梯度。
\frac{\partial J(\theta)}{\partial\theta_j}
& = -\frac1m\sum_{i=0}^m(y^i-h_\theta(x^i)) \frac{\partial}{\partial\theta_j}(y^i-h_\theta(x^i)) \\
& = -\frac1m\sum_{i=0}^m(y^i-h_\theta(x^i)) \frac{\partial}{\partial\theta_j}(\sum_{j=0}^n\theta_jx_j^i-y^i) \\
& = -\frac1m\sum_{i=0}^m(y^i-h_\theta(x^i))x^i_j
\end{align}
\]
- 沿着梯度的反方向更新参数θ的值
:=\theta_j - \alpha\frac1m\sum_{i=0}^m(y^i-h_\theta(x^i))x^i_j
\]
- 迭代直到收敛。
可以看到,批量梯度下降是用了训练集中的所有样本。因此在数据量很大的时候,每次迭代都要遍历训练集一遍,开销会很大,所以在数据量大的时候,可以采用随机梯度下降法。
随机梯度下降(Stochastic gradient descent)
和批量梯度有所不同的地方在于,每次迭代只选取一个样本的数据,一旦到达最大的迭代次数或是满足预期的精度,就停止。
可以得出随机梯度下降法的θ更新表达式。
\]
迭代直到收敛。
两种迭代思路的python实现
下面是python的代码实现,现在仅仅是用纯python的语法(python2.7)来实现的。随着学习的深入,届时还会有基于numpy等一些库的实现,下次补充。
#encoding:utf-8
#随机梯度
def stochastic_gradient_descent(x,y,theta,alpha,m,max_iter):
"""随机梯度下降法,每一次梯度下降只使用一个样本。
:param x: 训练集种的自变量
:param y: 训练集种的因变量
:param theta: 待求的权值
:param alpha: 学习速率
:param m: 样本总数
:param max_iter: 最大迭代次数
"""
deviation = 1
iter = 0
flag = 0
while True:
for i in range(m): #循环取训练集中的一个
deviation = 0
h = theta[0] * x[i][0] + theta[1] * x[i][1]
theta[0] = theta[0] + alpha * (y[i] - h)*x[i][0]
theta[1] = theta[1] + alpha * (y[i] - h)*x[i][1]
iter = iter + 1
#计算误差
for i in range(m):
deviation = deviation + (y[i] - (theta[0] * x[i][0] + theta[1] * x[i][1])) ** 2
if deviation <EPS or iter >max_iter:
flag = 1
break
if flag == 1 :
break
return theta, iter
#批量梯度
def batch_gradient_descent(x,y,theta,alpha,m,max_iter):
"""批量梯度下降法,每一次梯度下降使用训练集中的所有样本来计算误差。
:param x: 训练集种的自变量
:param y: 训练集种的因变量
:param theta: 待求的权值
:param alpha: 学习速率
:param m: 样本总数
:param max_iter: 最大迭代次数
"""
deviation = 1
iter = 0
while deviation > EPS and iter < max_iter:
deviation = 0
sigma1 = 0
sigma2 = 0
for i in range(m): #对训练集中的所有数据求和迭代
h = theta[0] * x[i][0] + theta[1] * x[i][1]
sigma1 = sigma1 + (y[i] - h)*x[i][0]
sigma2 = sigma2 + (y[i] - h)*x[i][1]
theta[0] = theta[0] + alpha * sigma1 /m
theta[1] = theta[1] + alpha * sigma2 /m
#计算误差
for i in range(m):
deviation = deviation + (y[i] - (theta[0] * x[i][0] + theta[1] * x[i][1])) ** 2
iter = iter + 1
return theta, iter
#运行 为两种算法设置不同的参数
# data and init
matrix_x = [[2.1,1.5],[2.5,2.3],[3.3,3.9],[3.9,5.1],[2.7,2.7]]
matrix_y = [2.5,3.9,6.7,8.8,4.6]
MAX_ITER = 5000
EPS = 0.0001
#随机梯度
theta = [2,-1]
ALPHA = 0.05
resultTheta,iters = stochastic_gradient_descent(matrix_x, matrix_y, theta, ALPHA, 5, MAX_ITER)
print 'theta=',resultTheta
print 'iters=',iters
#批量梯度
theta = [2,-1]
ALPHA = 0.05
resultTheta,iters = batch_gradient_descent(matrix_x, matrix_y, theta, ALPHA, 5, MAX_ITER)
print 'theta=',resultTheta
print 'iters=',iters
代码见github。https://github.com/maoqyhz/machine_learning_practice.git
运行结果
ALPHA = 0.05
theta= [-0.08445285887795494, 1.7887820818368738]
iters= 1025
theta= [-0.08388979324755381, 1.7885951009289043]
iters= 772
[Finished in 0.5s]
ALPHA = 0.01
theta= [-0.08387216503392847, 1.7885649678753883]
iters= 3566
theta= [-0.08385924864202322, 1.788568071697816]
iters= 3869
[Finished in 0.1s]
ALPHA = 0.1
theta= [588363545.9596066, -664661366.4562845]
iters= 5001
theta= [-0.09199523483489512, 1.7944581778450577]
iters= 516
[Finished in 0.2s]
总结
梯度下降法是一种最优化问题求解的算法。有批量梯度和随机梯度两种不同的迭代思路。他们有以下的差异:
- 批量梯度收敛速度慢,随机梯度收敛速度快。
- 批量梯度是在θ更新前对所有样例汇总误差,而随机梯度下降的权值是通过考查某个样本来更新的
- 批量梯度的开销大,随机梯度的开销小。
使用梯度下降法时需要寻找出一个最好的学习效率。这样可以使得使用最少的迭代次数达到我们需要的精度。
参考文献
- 在博客中使用LaTeX插入数学公式
- 随机梯度下降(Stochastic gradient descent)和 批量梯度下降(Batch gradient descent )的公式对比、实现对比
- 随机梯度下降法
- 线性回归与梯度下降算法
- 梯度下降算法的Python实现
机器学习基础——梯度下降法(Gradient Descent)的更多相关文章
- (3)梯度下降法Gradient Descent
梯度下降法 不是一个机器学习算法 是一种基于搜索的最优化方法 作用:最小化一个损失函数 梯度上升法:最大化一个效用函数 举个栗子 直线方程:导数代表斜率 曲线方程:导数代表切线斜率 导数可以代表方向, ...
- <反向传播(backprop)>梯度下降法gradient descent的发展历史与各版本
梯度下降法作为一种反向传播算法最早在上世纪由geoffrey hinton等人提出并被广泛接受.最早GD由很多研究团队各自发表,可他们大多无人问津,而hinton做的研究完整表述了GD方法,同时hin ...
- 梯度下降法Gradient descent(最速下降法Steepest Descent)
最陡下降法(steepest descent method)又称梯度下降法(英语:Gradient descent)是一个一阶最优化算法. 函数值下降最快的方向是什么?沿负梯度方向 d=−gk
- matlab实现梯度下降法(Gradient Descent)的一个例子
在此记录使用matlab作梯度下降法(GD)求函数极值的一个例子: 问题设定: 1. 我们有一个$n$个数据点,每个数据点是一个$d$维的向量,向量组成一个data矩阵$\mathbf{X}\in \ ...
- 梯度下降(gradient descent)算法简介
梯度下降法是一个最优化算法,通常也称为最速下降法.最速下降法是求解无约束优化问题最简单和最古老的方法之一,虽然现在已经不具有实用性,但是许多有效算法都是以它为基础进行改进和修正而得到的.最速下降法是用 ...
- 机器学习(1)之梯度下降(gradient descent)
机器学习(1)之梯度下降(gradient descent) 题记:最近零碎的时间都在学习Andrew Ng的machine learning,因此就有了这些笔记. 梯度下降是线性回归的一种(Line ...
- 理解梯度下降法(Gradient Decent)
1. 什么是梯度下降法? 梯度下降法(Gradient Decent)是一种常用的最优化方法,是求解无约束问题最古老也是最常用的方法之一.也被称之为最速下降法.梯度下降法在机器学习中十分常见,多用 ...
- 李宏毅机器学习课程---4、Gradient Descent (如何优化 )
李宏毅机器学习课程---4.Gradient Descent (如何优化) 一.总结 一句话总结: 调整learning rates:Tuning your learning rates 随机Grad ...
- 梯度下降(Gradient Descent)小结 -2017.7.20
在求解算法的模型函数时,常用到梯度下降(Gradient Descent)和最小二乘法,下面讨论梯度下降的线性模型(linear model). 1.问题引入 给定一组训练集合(training se ...
随机推荐
- 破除Odoo 菜单栏提示 99+
菜单栏提示利用的menu对象的needaction_counter属性,默认只能显示99个 多于99则显示99+ 如果希望显示完整的数字,则需要改动如下两个地方. 一.menu菜单的显示限制: 将第一 ...
- 1051. Pop Sequence
原题连接:https://www.patest.cn/contests/pat-a-practise/1051 题目: Given a stack which can keep M numbers a ...
- C++ 小知识积累
(1)setw和setfill函数 #include<iomanip> 代码: #include<iostream> #include<iomanip> using ...
- js通过注册表找到本地软件安装路径并且执行
场景:用js执行本地的安装软件,如果不存在就执行安装 操作步骤: 1.前台js代码 <script type="text/javascript"> function e ...
- linux进程管理(上)
程序和进程的区别: 1.程序是一种静态资源 程序启动产生进程 2.程序与进程无一一对应原则 进程是动态的一个过程 父进程和子进程在前面提过 前台进程:执行命令时只能等待的进程为前台进程也叫异步进程 ...
- 关于printf错用格式化字符串导致double和long double输出错误的小随笔
[题外话] 以前用HUSTOJ给学校搭建Online Judge,所有的评测都是在Linux下进行的.后来为了好往学校服务器上部署,所以大家重新做了一套Online Judge,Web和Judge都是 ...
- SQL Server 索引和表体系结构(包含列索引)
包含列索引 概述 包含列索引也是非聚集索引,索引结构跟聚集索引结构是一样,有一点不同的地方就是包含列索引的非键列只存储在叶子节点:包含列索引的列分为键列和非键列,所谓的非键列就是INCLUDE中包含的 ...
- 架构设计(ASP.NET MVC+Knockout+Web API+SignalR)
最近忙于重构项目的架构设计,没有时间发博客,也没有时间回复邮件及博文评论,忘各位见谅: 今天先发布架构设计图,同样没有时间写相关的介绍也没有时间回复评论,所以就不发在首页,希望给看到的朋友一些参考,同 ...
- Windows Azure Storage (17) Azure Storage读取访问地域冗余(Read Access – Geo Redundant Storage, RA-GRS)
<Windows Azure Platform 系列文章目录> 细心的用户会发现,微软在国外和国内的数据中心建设都是成对的,比如香港数据中心(Asia East)和新加坡的数据中心(Sou ...
- Java ServletContextListener用法
ServletContext 被 Servlet 程序用来与 Web 容器通信.例如写日志,转发请求.每一个 Web 应用程序含有一个Context,被Web应用内的各个程序共享.因为Context可 ...