更好的阅读体验

Portal

Portal1: Codeforces

Portal2: Luogu

Description

In mathematical terms, the sequence \(F_n\) of Fibonacci numbers is defined by the recurrence relation

\[F_1 = 1; F_2 = 1; F_n = F_n - 1 + F_n - 2 (n > 2)
\]

DZY loves Fibonacci numbers very much. Today DZY gives you an array consisting of \(n\) integers: \(a1, a2, \cdots , an\). Moreover, there are \(m\) queries, each query has one of the two types:

  1. Format of the query "1 l r". In reply to the query, you need to add \(F_i - l + 1\) to each element ai, where \(l \le i \le r\).

  2. Format of the query "2 l r". In reply to the query you should output the value of modulo \(1000000009 (10^9 + 9)\).

Help DZY reply to all the queries.

Input

The first line of the input contains two integers \(n\) and \(m (1 \le n, m \le 300000)\). The second line contains \(n\) integers \(a_1, a_2, \cdots , a_n (1 \le ai \le 10^9)\) — initial array \(a\) .

Then, \(m\) lines follow. A single line describes a single query in the format given in the statement. It is guaranteed that for each query inequality \(1 \le l \le r \le n\) holds.

Output

For each query of the second type, print the value of the sum on a single line.

Sample Input

4 4
1 2 3 4
1 1 4
2 1 4
1 2 4
2 1 3

Sample Output

17
12

Sample Explain

After the first query, \(a = [2, 3, 5, 7]\).

For the second query, \(sum = 2 + 3 + 5 + 7 = 17\).

After the third query, \(a = [2, 4, 6, 9]\).

For the fourth query, \(sum = 2 + 4 + 6 = 12\).

Description in Chinese

题目让我们求给你一个序列,支持区间加Fibonacci数列前r - l + 1项和查询区间和。

Solution

一些约定:把斐波那契数列的前两个数\(F_1 = 1, F_2 = 1\)换成另两个数,仍满足\(F_n = F_{n - 1} + F_{n - 2}(n > 2)\)的数列称为广义斐波那契数列。

Fibonacci数列有一些性质:

性质\(1\). \(F_n = (\sum^{n - 2}_{i = 1}{F_i}) + F_2(n > 2)\);

证明如下:

首先将前几项Fibonacci数列展开。

F(1) = 1
F(2) = 1
F(3) = F(1) + F(2)
F(4) = F(2) + F(3) = F(2) + F(1) + F(2)
F(5) = F(3) + F(4) = F(3) + F(2) + F(1) + F(2)
F(6) = F(4) + F(5) = F(4) + F(3) + F(2) + F(1) + F(2)
......

在\(F_n = F_{n - 1} + F_{n - 2}\)中,我们可以把\(F_{n - 1}\)按式子展开,可得\(F_n = \sum^{n - 3}_{i = 1} + F_2 + F_{n - 2}\),即\(F_n = (\sum^{n - 2}_{i = 1}{F_i}) + F_2(n > 2)\),跟原式一模一样,故原式正确性得证。

性质\(2\). 一个广义斐波那契数列数列\(f_i\), 当\(f_1 = x, f_2 = y\)时,则有\(f_n = x \times f_{n - 1} + y \times f_{n - 2}\)

证明如下:

这个性质与性质1类似,证明方法也与性质1类似,列举几个:

f(1) = x
f(2) = y
f(3) = f(1) + f(2) = x × F(1)
f(4) = f(2) + f(3) = x × F(1) + y × F(2)
f(5) = f(3) + f(4) = x × F(2) + y × F(3)
f(6) = f(4) + f(5) = x × F(3) + y × F(4)
......

把上述规律推广到代数式:

\[f_n = f_{n - 1} + f_{n - 2} \\\\ \quad = x \times f_{n - 2} + y \times f_{n - 3} + x \times f_{n - 3} + y \times f_{n - 4} \\\\ \quad = x \times (f_{n - 2} + f_{n - 3}) + y \times (f_{n - 3} + f_{n - 4}) \\\\ \quad = x \times f_{n - 1} + y \times f_{n - 2}
\]

证毕。

性质\(3\): 任意两段不同的广义斐波那契数列段相加(逐项相加),所得的数列任然是广义斐波那契数列。

这个性质易证。


这题我们维护一棵线段树,线段树需要维护\(L\)至\(R\)区间的广义斐波那契数列的第一项,第二项与区间的和。

下传标记时,我们可以在左区间加广义斐波那契数列的前两项,在右区间可以求出总和再加上总和就行了,时间复杂\(\text{O(n log n)}\)。

Code

#include<iostream>
#include<algorithm>
#include<cstdio>
#include<cstring>
#include<cmath> using namespace std; typedef long long LL;
const int MAXN = 300005, MAXM = 1200005, mod = 1e9 + 9;
struct node {
int c1, c2, sum;
} tree[MAXM];
int n, m, opt, x, y, a[MAXN], f[MAXN];
inline int add(int x, int y) {//两项相加并取模
int ret = x + y;
if (ret < 0) return ret += mod; else return ret % mod;
}
inline int calc1(int x, int y, int len) {//计算斐波那契
if (len == 1) return x; else
if (len == 2) return y; else return ((LL)x * f[len - 2] + (LL)y * f[len - 1]) % mod;
}
inline int calc2(int x, int y, int len) {//计算总和
if (len == 1) return x; else
if (len == 2) return add(x, y); else return add(calc1(x, y, len + 2), -y);
}
inline void pushup(int rt) {
tree[rt].sum = add(tree[rt << 1].sum, tree[rt << 1 | 1].sum);
}
inline void pushdown(int rt, int l, int r) {//下传标记
if (tree[rt].c1) {
int mid = l + r >> 1;
tree[rt << 1].c1 = add(tree[rt << 1].c1, tree[rt].c1);
tree[rt << 1].c2 = add(tree[rt << 1].c2, tree[rt].c2);
tree[rt << 1].sum = add(tree[rt << 1].sum, calc2(tree[rt].c1, tree[rt].c2, mid - l + 1));
int x = calc1(tree[rt].c1, tree[rt].c2, mid - l + 2), y = calc1(tree[rt].c1, tree[rt].c2, mid - l + 3);
tree[rt << 1 | 1].c1 = add(tree[rt << 1 | 1].c1, x);
tree[rt << 1 | 1].c2 = add(tree[rt << 1 | 1].c2, y);
tree[rt << 1 | 1].sum = add(tree[rt << 1 | 1].sum, calc2(x, y, r - mid));
tree[rt].c1 = 0; tree[rt].c2 = 0;
}
}
inline void update(int rt, int l, int r, int ansl, int ansr) {//线段树区间更新
if (ansl <= l && r <= ansr) {
tree[rt].c1 = add(tree[rt].c1, f[l - ansl + 1]);
tree[rt].c2 = add(tree[rt].c2, f[l - ansl + 2]);
tree[rt].sum = add(tree[rt].sum, calc2(f[l - ansl + 1], f[l - ansl + 2], r - l + 1));
return ;
}
pushdown(rt, l, r);
int mid = l + r >> 1;
if (ansl <= mid) update(rt << 1, l, mid, ansl, ansr);
if (ansr > mid) update(rt << 1 | 1, mid + 1, r, ansl, ansr);
pushup(rt);
}
inline int query(int rt, int l, int r, int ansl, int ansr) {//线段树区间查询
int ret = 0;
if (ansl <= l && r <= ansr) {
ret = tree[rt].sum;
return ret;
}
pushdown(rt, l, r);
int mid = l + r >> 1;
if (ansl <= mid) ret = add(ret, query(rt << 1, l, mid, ansl, ansr));
if (ansr > mid) ret = add(ret, query(rt << 1 | 1, mid + 1, r, ansl, ansr));
return ret;
}
int main() {
scanf("%d%d", &n, &m);
for (int i = 1; i <= n; i++) {
scanf("%d", &x);
a[i] = add(a[i - 1], x);
}
f[1] = 1; f[2] = 1;
for (int i = 3; i <= n + 2; i++)
f[i] = add(f[i - 1], f[i - 2]);
for (int i = 1; i <= m; i++) {
scanf("%d%d%d", &opt, &x, &y);
if (opt == 1) update(1, 1, n, x, y); else printf("%d\n", add(query(1, 1, n, x, y), a[y] - a[x - 1]));
}
return 0;
}

『题解』Codeforces446C DZY Loves Fibonacci Numbers的更多相关文章

  1. Codeforces446C - DZY Loves Fibonacci Numbers

    Portal Description 给出一个\(n(n\leq3\times10^5)\)个数的序列,进行\(m(m\leq3\times10^5)\)次操作,操作有两种: 给区间\([L,R]\) ...

  2. Codeforces446C DZY Loves Fibonacci Numbers(线段树 or 分块?)

    第一次看到段更斐波那契数列的,整个人都不会好了.事后看了题解才明白了一些. 首先利用二次剩余的知识,以及一些数列递推式子有下面的 至于怎么解出x^2==5(mod 10^9+9),我就不知道了,但是要 ...

  3. codeforces 446C DZY Loves Fibonacci Numbers(数学 or 数论+线段树)(两种方法)

    In mathematical terms, the sequence Fn of Fibonacci numbers is defined by the recurrence relation F1 ...

  4. Codeforces 446-C DZY Loves Fibonacci Numbers 同余 线段树 斐波那契数列

    C. DZY Loves Fibonacci Numbers time limit per test 4 seconds memory limit per test 256 megabytes inp ...

  5. Codeforces 446C —— DZY Loves Fibonacci Numbers(线段树)

    题目:DZY Loves Fibonacci Numbers 题意比較简单,不解释了. 尽管官方的题解也是用线段树,但还利用了二次剩余. 可是我没有想到二次剩余,然后写了个感觉非常复杂度的线段树,还是 ...

  6. 「CF446C」 DZY Loves Fibonacci Numbers

    「CF446C」 DZY Loves Fibonacci Numbers 这里提供一种优美的根号分治做法. 首先,我们考虑一种不太一样的暴力.对于一个区间加斐波那契数的操作 \([a,b]\),以及一 ...

  7. cf446C DZY Loves Fibonacci Numbers

    C. DZY Loves Fibonacci Numbers time limit per test 4 seconds memory limit per test 256 megabytes inp ...

  8. Codeforces Round #FF 446 C. DZY Loves Fibonacci Numbers

    參考:http://www.cnblogs.com/chanme/p/3843859.html 然后我看到在别人的AC的方法里还有这么一种神方法,他预先设定了一个阈值K,当当前的更新操作数j<K ...

  9. [CodeForces - 447E] E - DZY Loves Fibonacci Numbers

    E  DZY Loves Fibonacci Numbers In mathematical terms, the sequence Fn of Fibonacci numbers is define ...

随机推荐

  1. 一种Cortex-M内核中的精确延时方法

    本文介绍一种Cortex-M内核中的精确延时方法 前言 为什么要学习这种延时的方法? 很多时候我们跑操作系统,就一般会占用一个硬件定时器--SysTick,而我们一般操作系统的时钟节拍一般是设置100 ...

  2. Spring Boot2 系列教程(十一)Spring Boot 中的静态资源配置

    当我们使用 SpringMVC 框架时,静态资源会被拦截,需要添加额外配置,之前老有小伙伴在微信上问松哥 Spring Boot 中的静态资源加载问题:"松哥,我的 HTML 页面好像没有样 ...

  3. SpringBoot2.x升级踩坑--新增Configuration property name限制

    最近公司项目在做SpringBoot的升级,在升级过程中遇到了一些问题,简单记录一下,做个分享.另外,本文中的程序只为示例代码,并非公司生产环境代码. 遇到什么问题 从SpringBoot1.x升级到 ...

  4. RF作用与目的

    robotframework自动化原理:通过ride工具编写脚本,加载指定的UI测试库,再通过pybot程序去运行指定脚本,调用浏览器驱动,打开浏览器,操作浏览器页面元素,达到模拟用户操作的行为 为什 ...

  5. 简单了解工作空间工厂(IWorkspaceFactory)

    工作空间工厂(WorkspaceFactory)是工作空间的发布者,允许客户连接通过一组连接属性定义的工作空间. 工作空间表达了一个包含一个或多个数据集的数据库或数据源,数据集可以是表.特征类.关系类 ...

  6. 一文读懂Spring MVC执行流程

    说到Spring MVC执行流程,网上有很多这方面的文章介绍,但是都不太详细,作为一个初学者去读会有许多不理解的地方,今天这篇文章记录一下我学习Spring MVC的心得体会 话不多说,先上图:   ...

  7. lodash 学习笔记

    一.介绍 官方文档: 中文 - https://www.lodashjs.com/docs/latest 英文- https://lodash.com/docs/4.17.15 1.作用 lodash ...

  8. 实用---java保留小数点后位数以及输出反转数字

    //方法一double b = 8.0/3.0; //与C语言不同,此处8.0和8有所区分 String format = String.format("%.2f,b"); //表 ...

  9. linux上war包方式安装Jenkins

    我的安装环境:jdk1.8, linux系统为: [root@ipha-dev71-1 nmon]# cat /etc/redhat-release # Linux查看版本当前操作系统发行版信息 Ce ...

  10. 张高兴的 .NET Core IoT 入门指南:(五)PWM 信号输出

    什么是 PWM 在解释 PWM 之前首先来了解一下电路中信号的概念,其中包括模拟信号和数字信号.模拟信号是一种连续的信号,与连续函数类似,在图形上表现为一条不间断的连续曲线.数字信号为只能取有限个数值 ...