Lucas定理:A、B是非负整数,p是质数。A B写成p进制:A=a[n]a[n-1]…a[0],B=b[n]b[n-1]…b[0]。
则组合数C(A,B)与C(a[n],b[n])C(a[n-1],b[n-1])…*C(a[0],b[0]) mod p同余
即:Lucas(n,m,p)=C(n%p,m%p)*Lucas(n/p,m/p,p)

ll fact[maxn], a[maxn], inv[maxn]; //fact为阶乘
void init() {
a[0] = a[1] = 1;
fact[0] = fact[1] = 1;
inv[1] = 1;
for( ll i = 2; i <= 100005; i ++ ) {
fact[i] = fact[i-1] * i % mod;
inv[i] = (mod - mod/i)*inv[mod%i]%mod;
a[i] = a[i-1] * inv[i] % mod;
}
} ll C( ll n, ll m ) {
return fact[n]*a[n-m]%mod*a[m]%mod;
}

  

求大的组合数模板 利用Lucas定理的更多相关文章

  1. 组合数取模&&Lucas定理题集

    题集链接: https://cn.vjudge.net/contest/231988 解题之前请先了解组合数取模和Lucas定理 A : FZU-2020  输出组合数C(n, m) mod p (1 ...

  2. poj 1430 Binary Stirling Number 求斯特林数奇偶性 数形结合| 斯特林数奇偶性与组合数的关系+lucas定理 好题

    题目大意 求子集斯特林数\(\left\{\begin{matrix}n\\m\end{matrix}\right\}\%2\) 方法1 数形结合 推荐一篇超棒的博客by Sdchr 就是根据斯特林的 ...

  3. 组合数取模Lucas定理及快速幂取模

    组合数取模就是求的值,根据,和的取值范围不同,采取的方法也不一样. 下面,我们来看常见的两种取值情况(m.n在64位整数型范围内) (1)  , 此时较简单,在O(n2)可承受的情况下组合数的计算可以 ...

  4. 51Nod1778 小Q的集合 【组合数】【Lucas定理】

    题目分析: 题解好高深...... 我给一个辣鸡做法算了,题解真的看不懂. 注意到方差恒为$0$,那么其实就是要我们求$\sum_{i=0}^{n}\binom{n}{i}(i^k-(n-i)^k)^ ...

  5. hdu 3944 DP? 组合数取模(Lucas定理+预处理+帕斯卡公式优化)

    DP? Problem Description Figure 1 shows the Yang Hui Triangle. We number the row from top to bottom 0 ...

  6. BZOJ4737 组合数问题 【Lucas定理 + 数位dp】

    题目 组合数C(n,m)表示的是从n个物品中选出m个物品的方案数.举个例子,从(1,2,3)三个物品中选择两个物品可以有( 1,2),(1,3),(2,3)这三种选择方法.根据组合数的定义,我们可以给 ...

  7. UOJ275 [清华集训2016] 组合数问题 【Lucas定理】【数位DP】

    题目分析: 我记得很久以前有人跟我说NOIP2016的题目出了加强版在清华集训中,但这似乎是一道无关的题目? 由于$k$为素数,那么$lucas$定理就可以搬上台面了. 注意到$\binom{i}{j ...

  8. [转]组合数取模 Lucas定理

    对于C(n, m) mod p.这里的n,m,p(p为素数)都很大的情况.就不能再用C(n, m) = C(n - 1,m) + C(n - 1, m - 1)的公式递推了. 这里用到Lusac定理 ...

  9. 2018.10.31 bzoj4737: 组合数问题(lucas定理+容斥原理+数位dp)

    传送门 这是一道让我重新认识lucaslucaslucas的题. 考虑到lucaslucaslucas定理: (nm)≡(n%pm%p)∗(npmp)\binom n m \equiv \binom ...

随机推荐

  1. Docker 容器基本操作[Docker 系列-2]

    ​Docker 入门及安装[Docker 系列-1] 镜像就像是一个安装程序,而容器则是程序运行时的一个状态. 查看容器 查看容器 启动 docker 后,使用 docker ps 命令可以查看当前正 ...

  2. Chrome 跨域 disable-web-security 关闭安全策略

    谷歌浏览器暂时关闭跨域. 当遇到以下情况,则可以简单的使用 关闭Chrome 安全策略跨域 开发时跨域,上线后,部署在一个域名下没有跨域问题 开发时,临时解决跨域问题 只有开发时用这个,其他时候,就不 ...

  3. Nginx配置安装(Mac)

    我用到的安装工具是:homebrew 真的很方便! 步骤1: 打开终端,输入 brew info nginx结果:我们可以看到,nginx在本地还未安装(Not installed),nginx的来源 ...

  4. DesignPattern系列__05开闭原则

    介绍 开闭原则是编程设计中最基本.最重要的原则. 定义:一个软件实体如类.方法和模块等,应该对扩展(提供方)开放,对修改(使用方)关闭.用抽象构建框架,用实现扩展细节. 也就是说,在需求发生新的变化时 ...

  5. lvs+keepalived 高可用及负载均衡

    一.环境准备 VIP:10.18.43.30 dr1:10.18.43.10 dr2:10.18.43.20 web1:10.18.43.13 web2:10.18.43.14 结构图 (一).预处理 ...

  6. Git命令备忘录

    目录 前言 基本内容 开始之前 基础内容 远程仓库 分支管理 前言 Git在平时的开发中经常使用,整理Git使用全面的梳理. 基本内容 开始之前 请自行准备好Git工具以及配置好Git的基本配置 基础 ...

  7. F#周报2019年第32期

    新闻 推出FSharp.Core 4.7,附带netstandard2支持 ML.NET 1.3.1发布 FSharp.SystemTextJson宣告:对于.NET Core的System.Text ...

  8. LK的NOIP膜拟赛

    T1 Learn to 签到 [题目描述] 希希最喜欢二进制了.希希最喜欢的运算是\(\wedge\). 希希还喜欢很多\(01\)序列.这些序列一共有\(n\)个,每个的长度为\(m\). 希希有一 ...

  9. Kafka 系列(二)—— 基于 ZooKeeper 搭建 Kafka 高可用集群

    一.Zookeeper集群搭建 为保证集群高可用,Zookeeper 集群的节点数最好是奇数,最少有三个节点,所以这里搭建一个三个节点的集群. 1.1 下载 & 解压 下载对应版本 Zooke ...

  10. EventEmitter的前端实现

    EventEmitter简介 EventEmitter是Node.js的内置模块events提供的一个类,它是Node事件流的核心,EventEmitter是服务端的东西, 前端已经有event-em ...