求大的组合数模板 利用Lucas定理
Lucas定理:A、B是非负整数,p是质数。A B写成p进制:A=a[n]a[n-1]…a[0],B=b[n]b[n-1]…b[0]。
则组合数C(A,B)与C(a[n],b[n])C(a[n-1],b[n-1])…*C(a[0],b[0]) mod p同余
即:Lucas(n,m,p)=C(n%p,m%p)*Lucas(n/p,m/p,p)
ll fact[maxn], a[maxn], inv[maxn]; //fact为阶乘
void init() {
a[0] = a[1] = 1;
fact[0] = fact[1] = 1;
inv[1] = 1;
for( ll i = 2; i <= 100005; i ++ ) {
fact[i] = fact[i-1] * i % mod;
inv[i] = (mod - mod/i)*inv[mod%i]%mod;
a[i] = a[i-1] * inv[i] % mod;
}
} ll C( ll n, ll m ) {
return fact[n]*a[n-m]%mod*a[m]%mod;
}
求大的组合数模板 利用Lucas定理的更多相关文章
- 组合数取模&&Lucas定理题集
题集链接: https://cn.vjudge.net/contest/231988 解题之前请先了解组合数取模和Lucas定理 A : FZU-2020 输出组合数C(n, m) mod p (1 ...
- poj 1430 Binary Stirling Number 求斯特林数奇偶性 数形结合| 斯特林数奇偶性与组合数的关系+lucas定理 好题
题目大意 求子集斯特林数\(\left\{\begin{matrix}n\\m\end{matrix}\right\}\%2\) 方法1 数形结合 推荐一篇超棒的博客by Sdchr 就是根据斯特林的 ...
- 组合数取模Lucas定理及快速幂取模
组合数取模就是求的值,根据,和的取值范围不同,采取的方法也不一样. 下面,我们来看常见的两种取值情况(m.n在64位整数型范围内) (1) , 此时较简单,在O(n2)可承受的情况下组合数的计算可以 ...
- 51Nod1778 小Q的集合 【组合数】【Lucas定理】
题目分析: 题解好高深...... 我给一个辣鸡做法算了,题解真的看不懂. 注意到方差恒为$0$,那么其实就是要我们求$\sum_{i=0}^{n}\binom{n}{i}(i^k-(n-i)^k)^ ...
- hdu 3944 DP? 组合数取模(Lucas定理+预处理+帕斯卡公式优化)
DP? Problem Description Figure 1 shows the Yang Hui Triangle. We number the row from top to bottom 0 ...
- BZOJ4737 组合数问题 【Lucas定理 + 数位dp】
题目 组合数C(n,m)表示的是从n个物品中选出m个物品的方案数.举个例子,从(1,2,3)三个物品中选择两个物品可以有( 1,2),(1,3),(2,3)这三种选择方法.根据组合数的定义,我们可以给 ...
- UOJ275 [清华集训2016] 组合数问题 【Lucas定理】【数位DP】
题目分析: 我记得很久以前有人跟我说NOIP2016的题目出了加强版在清华集训中,但这似乎是一道无关的题目? 由于$k$为素数,那么$lucas$定理就可以搬上台面了. 注意到$\binom{i}{j ...
- [转]组合数取模 Lucas定理
对于C(n, m) mod p.这里的n,m,p(p为素数)都很大的情况.就不能再用C(n, m) = C(n - 1,m) + C(n - 1, m - 1)的公式递推了. 这里用到Lusac定理 ...
- 2018.10.31 bzoj4737: 组合数问题(lucas定理+容斥原理+数位dp)
传送门 这是一道让我重新认识lucaslucaslucas的题. 考虑到lucaslucaslucas定理: (nm)≡(n%pm%p)∗(npmp)\binom n m \equiv \binom ...
随机推荐
- Selenium+java - 弹出框处理
一.弹出框分类: 弹出框分为两种,一种基于原生JavaScript写出来的弹窗,另一种是自定义封装好的样式的弹出框,本文重点介绍原生JavaScript写出来的弹窗,另一种弹窗用click()基本就能 ...
- git指令-未完待更新
git指令 1. $ git config --global user.name "Your Name" $ git config --global user.email &quo ...
- 保存MTLAB图片是想去掉白边
在做一些matlab小实验的时候,生成的图片需要临时保存的时候会有多余的白边,如何能解决这种问题? 输入 iptsetpref('ImshowBorder','tight'); 后,再show一次图即 ...
- Java集合系列(一)List集合
List的几种实现的区别与联系 List主要有ArrayList.LinkedList与Vector几种实现. ArrayList底层数据结构是数组, 增删慢.查询快; 线程不安全, 效率高; 不可以 ...
- 注解与AOP切面编程实现redis缓存与数据库查询的解耦
一般缓存与数据库的配合使用是这样的. 1.查询缓存中是否有数据. 2.缓存中无数据,查询数据库. 3.把数据库数据插入到缓存中. 其实我们发现 1,3 都是固定的套路,只有2 是真正的业务代码.我们可 ...
- tab选项卡代码
$('.case_header ul li').click(function(){ $(this).addClass('active').siblings().removeClass('active' ...
- Unity经典游戏教程之:弓之骑士
版权声明: 本文原创发布于博客园"优梦创客"的博客空间(网址:http://www.cnblogs.com/raymondking123/)以及微信公众号"优梦创客&qu ...
- 第四章 文件的基本管理和XFS文件系统备份恢复 随堂笔记
第四章 文件的基本管理和XFS文件系统备份恢复 本节所讲内容: 4.1 Linux系统目录结构和相对/绝对路径. 4.2 创建/复制/删除文件,rm -rf / 意外事故 4.3 查看文件内容的命令 ...
- Mybatis获取代理对象
mybatis-config.xml里标签可以放置多个environment,这里可以切换test和develop数据源 databaseIdProvider提供多种数据库,在xml映射文件里选择da ...
- ccf 201903-5 317号子任务(60分)
看到这题,第一印象,用dijkstra算法求n次单源最短路,时间复杂度O(n^3),超时30分妥妥的. 于是用优先队列优化,O(n*mlogm),快很多,但依然30. 那么不妨换一种思路,题目要求的是 ...