假设我们现在拿到了一个非常大的数组,对于这个数组里面的数字要反复不断地做两个操作。

1、(query)随机在这个数组中选一个区间,求出这个区间所有数的和。

2、(update)不断地随机修改这个数组中的某一个值。

时间复杂度:

枚举

枚举L~R的每个数并累加。

  • query:O(n)

找到要修改的数直接修改。

  • update:O(1)

如果query与update要做很多很多次,query的O(n)会被卡住,所以时间复杂度会非常慢。那么有没有办法把query的时间复杂度降成O(1)呢?其中一种方法如下:

  • 先建立一个与a数组一样大的数组。

  • s[1]=a[1];s[2]=a[1]+a[2];s[3]=a[1]+a[2]+a[3];...;s[n]=a[1]+a[2]+a[3]+...+a[n](在s数组中存入a的前缀和)

  • 此时a[L]+a[L+1]+...+a[R]=s[R]-s[L-1],query的时间复杂度降为O(1)。
  • 但若要修改a[k]的值,随之也需修改s[k],s[k+1],...,s[n]的值,时间复杂度升为O(n)。

前缀和

query:O(1)

update:O(n)

  • 我们发现,当我们想尽方法把其中一个操作的时间复杂度改成O(1)后,另一个操作的时间复杂度就会变为O(n)。当query与update的操作特别多时,不论用哪种方法,总体的时间复杂度都不会特别快。
  • 所以,我们将要讨论一种叫线段树的数据结构,它可以把这两个操作的时间复杂度平均一下,使得query和update的时间复杂度都落在O(n log n)上,从而增加整个算法的效率。

线段树

假设我们拿到了如下长度为6的数组:

在构建线段树之前,我们先阐述线段树的性质:

1、线段树的每个节点都代表一个区间。

2、线段树具有唯一的根节点,代表的区间是整个统计范围,如[1,N]。

3、线段树的每个叶节点都代表一个长度为1的元区间[x,x]。

4、对于每个内部节点[l,r],它的左子结点是[l,mid],右子节点是[mid+1,r],其中mid=(l+r)/2(向下取整)。

依照这个数组,我们构建如下线段树(结点的性质为sum):

若我们要求[2-5]区间中数的和:

若我们要把a[4]改为6:

  • 先一层一层找到目标节点修改,在依次向上修改当前节点的父节点。

接下来的问题是:如何保存这棵线段树?

  • 用数组存储。

若我们要取node结点的左子结点(left)与右子节点(right),方法如下:

  • left=2*node+1
  • right=2*ndoe+2

举结点5为例(左子结点为节点11,右子节点为节点12):

  • left5=2*5+1=11
  • right5=2*5+2=12

接下来给出建树的代码:

#include<bits/stdc++.h>
using namespace std; const int N = ; int a[] = {, , , , , };
int size = ;
int tree[N] = {}; //建立范围为a[start]~a[end]
void build(int a[], int tree[], int node/*当前节点*/, int start, int end){
//递归边界(即遇到叶子节点时)
if (start == end){
//直接存储a数组中的值
tree[node] = a[start];
} else {
//将建立的区间分成两半
int mid = (start + end) / ; int left = * node + ;//左子节点的下标
int right = * node + ;//右子节点的下标 //求出左子节点的值(即从节点left开始,建立范围为a[start]~a[mid])
build(a, tree, left, start, mid);
//求出右子节点的值(即从节点right开始,建立范围为a[start]~a[mid])
build(a, tree, right, mid+, end); //当前节点的职位左子节点的值加上右子节点的值
tree[node] = tree[left] + tree[right];
}
} int main(){
//从根节点(即节点0)开始建树,建树范围为a[0]~a[size-1]
build(a, tree, , , size-); for(int i = ; i <= ; i ++)
printf("tree[%d] = %d\n", i, tree[i]); return ;
}

运行结果:

update操作:

  • 确定需要改的分支,向下寻找需要修改的节点,再向上修改节点值。
  • 与建树的函数相比,update函数增加了两个参数x,val,即把a[x]改为val。

例:把a[x]改为6(代码实现)

void update(int a[], int tree[], int node, int start, int end, int x, int val){
//找到a[x],修改值
if (start == end){
a[x] = val;
tree[node] = val;
} else {
int mid = (start + end) / ; int left = * node + ;
int right = * node + ; if (x >= start && x <= mid) {//如果x在左分支
update(a, tree, start, mid, x, val);
}
else {//如果x在右分支
update(a, tree, right, mid+, end, x, val);
} //向上更新值
tree[node] = tree[left] + tree[right];
}
} 在主函数中调用:
//把a[x]改成6
update(a, tree, , , size-, , );

运行结果:

query操作:

  • 向下依次寻找包含在目标区间中的区间,并累加。
  • 与建树的函数相比,query函数增加了两个参数L,Rl,即把求a的区间[L,R]的和。

例:求a[2]+a[3]+...+a[5]的值(代码实现)

int query(int a[], int tree[], int node, int start, int end, int L,int R){
//若目标区间与当时区间没有重叠,结束递归返回0
if (start > R || end < L){
return ;
} //若目标区间包含当时区间,直接返回节点值
else if (L <=start && end <= R){
return tree[node];
} else {
int mid = (start + end) / ; int left = * node + ;
int right = * node + ; //计算左边区间的值
int sum_left = query(a, tree, left, start, mid, L, R);
//计算右边区间的值
int sum_right = query(a, tree, right, mid+, end, L, R); //相加即为答案
return sum_left + sum_right;
}
} 在主函数中调用:
//求区间[2,5]的和
int ans = query(a, tree, , , size-, , );
printf("ans = %d", ans);

运行结果:

最后,献上完整的代码:

#include<bits/stdc++.h>
using namespace std; const int N = ; int a[] = {, , , , , };
int size = ;
int tree[N] = {}; //建立范围为a[start]~a[end]
void build(int a[], int tree[], int node/*当前节点*/, int start, int end){
//递归边界(即遇到叶子节点时)
if (start == end) {
//直接存储a数组中的值
tree[node] = a[start];
} else {
//将建立的区间分成两半
int mid = (start + end) / ; int left = * node + ;//左子节点的下标
int right = * node + ;//右子节点的下标 //求出左子节点的值(即从节点left开始,建立范围为a[start]~a[mid])
build(a, tree, left, start, mid);
//求出右子节点的值(即从节点right开始,建立范围为a[start]~a[mid])
build(a, tree, right, mid+, end); //当前节点的职位左子节点的值加上右子节点的值
tree[node] = tree[left] + tree[right];
}
} void update(int a[], int tree[], int node, int start, int end, int x, int val){
//找到a[x],修改值
if (start == end){
a[x] = val;
tree[node] = val;
} else {
int mid = (start + end) / ; int left = * node + ;
int right = * node + ; if (x >= start && x <= mid) {//如果x在左分支
update(a, tree, left, start, mid, x, val);
}
else {//如果x在右分支
update(a, tree, right, mid+, end, x, val);
} //向上更新值
tree[node] = tree[left] + tree[right];
}
} //求a[L]~a[R]的区间和
int query(int a[], int tree[], int node, int start, int end, int L,int R){
//若目标区间与当时区间没有重叠,结束递归返回0
if (start > R || end < L){
return ;
} //若目标区间包含当时区间,直接返回节点值
else if (L <=start && end <= R){
return tree[node];
} else {
int mid = (start + end) / ; int left = * node + ;
int right = * node + ; //计算左边区间的值
int sum_left = query(a, tree, left, start, mid, L, R);
//计算右边区间的值
int sum_right = query(a, tree, right, mid+, end, L, R); //相加即为答案
return sum_left + sum_right;
}
} int main(){
//从根节点(即节点0)开始建树,建树范围为a[0]~a[size-1]
build(a, tree, , , size-); for(int i = ; i <= ; i ++)
printf("tree[%d] = %d\n", i, tree[i]);
printf("\n"); //把a[x]改成6
update(a, tree, , , size-, , ); for(int i = ; i <= ; i ++)
printf("tree[%d] = %d\n", i, tree[i]);
printf("\n"); //求区间[2,5]的和
int ans = query(a, tree, , , size-, , );
printf("ans = %d", ans); return ;
}

运行结果:

学习视频链接

【数据结构】线段树(Segment Tree)的更多相关文章

  1. 『线段树 Segment Tree』

    更新了基础部分 更新了\(lazytag\)标记的讲解 线段树 Segment Tree 今天来讲一下经典的线段树. 线段树是一种二叉搜索树,与区间树相似,它将一个区间划分成一些单元区间,每个单元区间 ...

  2. 线段树(Segment Tree)(转)

    原文链接:线段树(Segment Tree) 1.概述 线段树,也叫区间树,是一个完全二叉树,它在各个节点保存一条线段(即“子数组”),因而常用于解决数列维护问题,基本能保证每个操作的复杂度为O(lg ...

  3. 【数据结构系列】线段树(Segment Tree)

    一.线段树的定义 线段树,又名区间树,是一种二叉搜索树. 那么问题来了,啥是二叉搜索树呢? 对于一棵二叉树,若满足: ①它的左子树不空,则左子树上所有结点的值均小于它的根结点的值 ②若它的右子树不空, ...

  4. BZOJ.4695.最假女选手(线段树 Segment tree Beats!)

    题目链接 区间取\(\max,\ \min\)并维护区间和是普通线段树无法处理的. 对于操作二,维护区间最小值\(mn\).最小值个数\(t\).严格次小值\(se\). 当\(mn\geq x\)时 ...

  5. 线段树(segment tree)

    线段树在一些acm题目中经常见到,这种数据结构主要应用在计算几何和地理信息系统中.下图就为一个线段树: (PS:可能你见过线段树的不同表示方式,但是都大同小异,根据自己的需要来建就行.) 1.线段树基 ...

  6. 浅谈线段树 Segment Tree

    众所周知,线段树是algo中很重要的一项! 一.简介 线段树是一种二叉搜索树,与区间树相似,它将一个区间划分成一些单元区间,每个单元区间对应线段树中的一个叶结点. 使用线段树可以快速的查找某一个节点在 ...

  7. 线段树 Interval Tree

    一.线段树 线段树既是线段也是树,并且是一棵二叉树,每个结点是一条线段,每条线段的左右儿子线段分别是该线段的左半和右半区间,递归定义之后就是一棵线段树. 例题:给定N条线段,{[2, 5], [4, ...

  8. 第二十九篇 玩转数据结构——线段树(Segment Tree)

          1.. 线段树引入 线段树也称为区间树 为什么要使用线段树:对于某些问题,我们只关心区间(线段) 经典的线段树问题:区间染色,有一面长度为n的墙,每次选择一段墙进行染色(染色允许覆盖),问 ...

  9. 算法手记 之 数据结构(线段树详解)(POJ 3468)

    依然延续第一篇读书笔记,这一篇是基于<ACM/ICPC 算法训练教程>上关于线段树的讲解的总结和修改(这本书在线段树这里Error非常多),但是总体来说这本书关于具体算法的讲解和案例都是不 ...

  10. ACM数据结构-线段树

    1.维护区间最大最小值模板(以维护最小值为例) #include<iostream> #include<stdio.h> #define LEN 11 #define MAX ...

随机推荐

  1. Elasticsearch实战总结

    上手elasticsearch有段时间了,主要以应用为主,未做深入的研究,下面就简单的日常作个简单的总结,做个记录. 版本问题 es版本繁杂,让首次使用的人无从下手.常见的有2+.5+版本,最新版已达 ...

  2. CMinpack使用介绍

    github: https://github.com/devernay/cminpack 主页: http://devernay.github.io/cminpack/ 使用手册: http://de ...

  3. How to Read a Paper丨如何阅读一篇论文

    这是我在看论文时无意刷到的博客推荐的一篇文章"How to Read a Paper",教你怎么样看论文.对于研究生来说,看论文基本是日常,一篇论文十多二十页,如何高效地读论文确实 ...

  4. MyBatis从入门到精通(2):MyBatis XML方式的基本用法

    本章将通过完成权限管理的常见业务来学习 MyBatis XML方式的基本用法 2.1一个简单的权限控制需求 权限管理的需求: 一个用户拥有若干角色,一个角色拥有若干权限,权限就是对某个模块资源的某种操 ...

  5. 列表 元组 range

    2019 年 7 月 9 日 列表---list------容器 列表:存储数据,支持多个数据类型,比如 :字符串 数字 布尔值 列表 集合 元组 ​ 特点 : 有序 可变 支持索引 (定义一个列表不 ...

  6. NOIP2018普及T1暨洛谷P5015 标题统计 题解

    题目链接:https://www.luogu.org/problemnew/show/P5015 分析: 这道题大概是给个签到分吧.很显然的字符串操作.本篇题解主要帮助初学者,请大佬略过. 首先给大家 ...

  7. 微服务SpringCloud之熔断监控Hystrix Dashboard和Turbine

    Hystrix-dashboard是一款针对Hystrix进行实时监控的工具,通过Hystrix Dashboard我们可以在直观地看到各Hystrix Command的请求响应时间, 请求成功率等数 ...

  8. Django REST Framework(DRF)_第二篇

    视图和路由 视图封装 第一次封装 ​ 上一篇最后我们对书籍表做了增删改查,那么如果现在我们有几十上百张表需要这样做呢?我们知道类的特性有封装,因此我们可以尝试进行封装下. from rest_fram ...

  9. C/C++指针函数和函数指针

    一.指针函数 当一个函数声明其返回值为一个指针时,实际上就是返回一个地址给调用函数,以用于需要指针或地址的表达式中. 格式: 类型说明符 * 函数名(参数) 当然了,由于返回的是一个地址,所以类型说明 ...

  10. linux初学者-输出输入管理

      1.输出重定向 在linux中,因为用户的权限不同,所以访问某些文件或者目录会被拒绝而形成错误输出,这些错误的输出也会显示出来.一般正确输出的编号为1,错误输出的编号为2.如下图,在普通用户stu ...