题目描述

小a是一个健忘的人,由于他经常忘记做作业,因此老师对他很恼火。
小a马上就要开学了,他学期一共2n

天,对于第i天,他有可能写了作业,也可能没写作业,不过他自己心里还有点B数,因此他会写恰好n天的作业
现在,小a需要安排他的学期计划,如果小a的学期中存在一天x,在这之前的x天中,他没写作业的天数 - 写作业的天数⩾k

,那么老师就会把它开除,我们称这是一种不合法的方案
小a想知道他有多少种合法的方案

输入描述:

第一行三个整数n,k,p,p表示对p取模

输出描述:

一个整数表示答案
示例1

输入

2 1 100007

输出

2

说明

总共有2n=4

合法的方案有
写了 没写 写了 没写
写了 写了 没写 没写
注意:没写 写了 没写 写了 是一种不合法的方案,因为在第一天时没写的天数-写了的天数⩾1
 
示例2

输入

10 5 10000007

输出

169252

思路:在x位置之前出现m+k个不读书,m个读书则为不合法序列,将后面的不读书和读书互换,则该序列中含有n+k个不读书和n-k个读书

合法方案$C^{n}_{2n}$ 不合法方案$C^{n+k}_{2n}$ 答案相减即可

因为p不一定为质数,所以不能直接做。

$C^{m}_{n}=\dfrac {n!}{m!\left( n-m\right) !}$ 把上下所有质因子的指数求出来,在快速幂算即可。

#include <bits/stdc++.h>
#define ll long long
using namespace std; template<typename T>
inline void read(T &x) {
x = ;T f = ; char ch = getchar();
while (ch < '' || ch > '') { if (ch == '-') f = -; ch = getchar(); }
while (ch >= '' && ch <= '') { x = x * + ch - ; ch = getchar(); }
x *= f;
} const int N = 2e6;
ll MOD, n, m;
bool vis[N + ];
int prime[N], prin; void getpri() {
for (int i = ; i <= N; i++) {
if (!vis[i]) prime[++prin] = i;
for (int j = ; j <= prin && i * prime[j] <= N; j++) {
vis[i * prime[j]] = ;
if (i % prime[j] == ) break;
}
}
} ll qp(ll a, ll b) {
ll res = ;
while (b) {
if (b & ) res = res * a % MOD;
a = a * a % MOD;
b >>= ;
}
return res;
} // 计算x!中素因子p的指数
ll cal(ll x, ll p) {
ll res = ;
ll temp = p;
while (x >= temp) {
res += x / temp;
temp *= p;
}
return res;
} ll solve(ll n, ll m) {
ll ans = ;
for (int i = ; i <= prin && prime[i] <= n; i++) {
ll cnt = cal(n, prime[i]) - cal(m, prime[i]) - cal(n - m, prime[i]);
ans = (ans * qp(prime[i], cnt)) % MOD;
}
return ans;
} int main() {
getpri();
read(n); read(m); read(MOD);
printf("%lld\n", (solve(n * , n) - solve(n * , n + m) + MOD) % MOD);
return ;
}

小a的学期 (组合数取模模板)的更多相关文章

  1. 大组合数取模之lucas定理模板,1<=n<=m<=1e9,1<p<=1e6,p必须为素数

    typedef long long ll; /********************************** 大组合数取模之lucas定理模板,1<=n<=m<=1e9,1&l ...

  2. 组合数取模Lucas定理及快速幂取模

    组合数取模就是求的值,根据,和的取值范围不同,采取的方法也不一样. 下面,我们来看常见的两种取值情况(m.n在64位整数型范围内) (1)  , 此时较简单,在O(n2)可承受的情况下组合数的计算可以 ...

  3. hdu 3944 DP? 组合数取模(Lucas定理+预处理+帕斯卡公式优化)

    DP? Problem Description Figure 1 shows the Yang Hui Triangle. We number the row from top to bottom 0 ...

  4. 2015 ICL, Finals, Div. 1 Ceizenpok’s formula(组合数取模,扩展lucas定理)

    J. Ceizenpok’s formula time limit per test 2 seconds memory limit per test 256 megabytes input stand ...

  5. BZOJ_2142_礼物_扩展lucas+组合数取模+CRT

    BZOJ_2142_礼物_扩展lucas+组合数取模 Description 一年一度的圣诞节快要来到了.每年的圣诞节小E都会收到许多礼物,当然他也会送出许多礼物.不同的人物在小E 心目中的重要性不同 ...

  6. 组合数取模&&Lucas定理题集

    题集链接: https://cn.vjudge.net/contest/231988 解题之前请先了解组合数取模和Lucas定理 A : FZU-2020  输出组合数C(n, m) mod p (1 ...

  7. Uva12034 (组合数取模)

    题意:两匹马比赛有三种比赛结果,n匹马比赛的所有可能结果总数 解法: 设答案是f[n],则假设第一名有i个人,有C(n,i)种可能,接下来还有f(n-i)种可能性,因此答案为 ΣC(n,i)f(n-i ...

  8. 排列组合+组合数取模 HDU 5894

    // 排列组合+组合数取模 HDU 5894 // 题意:n个座位不同,m个人去坐(人是一样的),每个人之间至少相隔k个座位问方案数 // 思路: // 定好m个人 相邻人之间k个座位 剩下就剩n-( ...

  9. [BZOJ 3129] [Sdoi2013] 方程 【容斥+组合数取模+中国剩余定理】

    题目链接:BZOJ - 3129 题目分析 使用隔板法的思想,如果没有任何限制条件,那么方案数就是 C(m - 1, n - 1). 如果有一个限制条件是 xi >= Ai ,那么我们就可以将 ...

随机推荐

  1. springboot异步线程

    前言 最近项目中出现了一个问题,发现自己的定时器任务在线上没有执行,但是在线下测试时却能执行,最后谷歌到了这篇文章SpringBoot踩坑日记-定时任务不定时了?; 本篇文章主要以自己在项目中遇到的问 ...

  2. 如何同时读取 TDateTimePicker 的 Date 和 Time ?

    由于 TDateTimePicker 只能用于日期或时间,不能同时使用.如果将Kind属性设置为dtkDate,则可以指定自定义DATE格式,但忽略任何TIME格式,并且Time未定义使用该属性.如果 ...

  3. day02——while、字符串格式化、运算符、编码初识

    day02 while--关键字(死循环) 格式:while 条件: ​ 循环体 print(1) while True: print("痒") print("鸡你太美& ...

  4. Python之路【第十七篇】:Python并发编程|协程

    一.协程 协程,又叫微线程,纤程.英文名Coroutine.协程本质上就是一个线程 优点1:协程极高的执行效率.因为子程序切换不是线程切换,而是由程序自身控制,因此,没有线程切换的开销,和多线程比,线 ...

  5. 山峰和山谷 Ridges and Valleys

    题目描述 思路 一开始看这道题目,也不是很会,谁会把统计之类的问题和bfs联系在一起,没有开始的状态,没有结束的状态,题目中连一个最短之类的词也没有出现. 然后统计嘛,题目中说了方格高度都相同,就把周 ...

  6. Glances - Linux上的实时系统监控工具(Centos安装)

    Glances  WebServer 模式 在 glances 的 WebServer 模式下,客户端只通过浏览器访问就可以获取远程服务器的运行状态. 安装成功后,使用 glances -w 命令即可 ...

  7. .net Dapper 学习系列(2) ---Dapper进阶

    目录 写在前面 前期准备 Dapper 单表批量添加 在Dapper 多表查询 在Dapper 调用存储过程 在Dapper 使用QueryMultiple进行多表查询 在Dapper 使用事务进行多 ...

  8. Linux中解压、压缩 ZIP文件

    解压 unzip -o -d /home/v-gazh myfile.zip # 把myfile.zip文件解压到 /home/v-gazh/ # -o:不提示的情况下覆盖文件: # -d:-d /h ...

  9. CSS-图片整合笔记

    注意点: 概念:图片整合技术( css sprite 或 精灵图).通过将多个图片融合到一张图片,然后通过CSS background 背景定位技术技巧布局网页背景 优势:减少 http iis 请求 ...

  10. 安装仪表盘控件Iocomp会遇到的几个常见问题

    相信从事HMI和自动化开发专业的小伙伴在使用工业仪表盘和图表控件时,都很熟悉怎么安装和操作Iocomp产品(毕竟它功能太强大了,基本人手一份的节奏),但是小编想肯定还是有很多和小编一样的入门的伙伴在安 ...