题意

给定一个有 $n$ 个结点的树,设 $S(i)$ 为第 $i$ 个结点的“指标值”,定义为 $S(i)=\sum_{i=1}^{n}dist(i,j)^k$,$dist(i, j)$ 为结点 $i$ 到结点 $j$ 的最小距离。请输出每个结点的指标值。($n \leq 5000, k \leq 150$)

分析

一个常用的转化

$$n^k=\sum_{i=0}^{k}S(k,i) \times C(n,i) \times i!$$

证明可以考虑组合意义,等式的左边就是把 $k$ 个球放在 $n$ 个盒子里;右边就是枚举非空盒子的数量 $i$,注意到这里的盒子是不同的,所以还要乘上一个 $i!$。

利用上面写的那个常用的转化。令 $dp[i][j]=\sum\limits_{k=1}^{n}C(dist(i,k),j)$,那么答案为 $ans_i$就可以表示成 $ans_i=\sum\limits_{j=1}^{k}S(k,j) \times j! \times dp[i][j]$。注意到 $dp[i][j]$ 是组合数是可以直接转移的,具体如下:

From: 链接

#include<cstdio>
#include<iostream>
using namespace std;
int n,k,head[];
const int mod=;
struct edg{
int to,next;
}e[];
int S[][],mi[];
int size,fd[][],fu[][];
void add(int x,int y){size++;e[size]={y,head[x]};head[x]=size;}
void dfs1(int x,int fa)
{
fd[x][]=;
for (int i=head[x];i;i=e[i].next)
{
int y=e[i].to;
if (y==fa) continue;
dfs1(y,x);
for (int j=;j<=k;j++)
{
if (j)
fd[x][j]=(fd[x][j]+fd[y][j]+fd[y][j-])%mod;
else fd[x][j]=(fd[x][j]+fd[y][j])%mod;
}
}
}
void dfs2(int x,int fa)
{
if (fa)
{
for (int i=;i<=k;i++)
{
if (i)
{
fu[x][i]=(fu[x][i]+fu[fa][i]+fu[fa][i-])%mod;
fu[x][i]=(fu[x][i]+fd[fa][i]+fd[fa][i-])%mod;
fu[x][i]=(fu[x][i]-(fd[x][i]+fd[x][i-])%mod+mod)%mod;
fu[x][i]=(fu[x][i]-fd[x][i-]+mod)%mod;
if (i>) fu[x][i]=(fu[x][i]-fd[x][i-]+mod)%mod;
}
else fu[x][]=n-fd[x][];
}
}
for (int i=head[x];i;i=e[i].next)
{
int y=e[i].to;
if (y==fa) continue;
dfs2(y,x);
}
}
int main()
{
scanf("%d%d",&n,&k);
mi[]=;for (int i=;i<=k;i++) mi[i]=mi[i-]*i%mod;
S[][]=;
for (int i=;i<=k;i++)
for (int j=;j<=i;j++)
S[i][j]=(S[i-][j-]+j*S[i-][j])%mod;
for (int x,y,i=;i<n;i++)
scanf("%d%d",&x,&y),add(x,y),add(y,x);
dfs1(,);dfs2(,);
for (int i=;i<=n;i++)
{
int ans=;
for (int j=;j<=k;j++)
ans=(ans+1ll*S[k][j]*mi[j]*(fd[i][j]+fu[i][j]))%mod;
printf("%d\n",ans);
}
}

参考链接:

1. https://blog.csdn.net/Charlie_jilei/article/details/79922722

2. https://shichengxiao01.github.io/2018/02/17/第二类斯特林数小结

BZOJ2159 Crash的文明世界——树上DP&&第二类Stirling数的更多相关文章

  1. BZOJ2159 Crash的文明世界(树形dp+斯特林数)

    根据组合意义,有nk=ΣC(n,i)*i!*S(k,i) (i=0~k),即将k个有标号球放进n个有标号盒子的方案数=在n个盒子中选i个将k个有标号球放入并且每个盒子至少有一个球. 回到本题,可以令f ...

  2. BZOJ2159 Crash 的文明世界 【第二类斯特林数 + 树形dp】

    题目链接 BZOJ2159 题解 显然不能直接做点分之类的,观察式子中存在式子\(n^k\) 可以考虑到 \[n^k = \sum\limits_{i = 0} \begin{Bmatrix} k \ ...

  3. [BZOJ2159]Crash的文明世界(斯特林数+树形DP)

    题意:给定一棵树,求$S(i)=\sum_{j=1}^{n}dist(i,j)^k$.题解:根据斯特林数反演得到:$n^m=\sum_{i=0}^{n}C(n,i)\times i!\times S( ...

  4. BZOJ2159 Crash的文明世界

    Description 传送门 给你一个n个点的树,边权为1. 对于每个点u, 求:\(\sum_{i = 1}^{n} distance(u, i)^{k}\) $ n \leq 50000, k ...

  5. BZOJ2159 : Crash 的文明世界

    $x^k=\sum_{i=1}^k Stirling2(k,i)\times i!\times C(x,i)$ 设$f[i][j]=\sum_{k=1}^n C(dist(i,k),j)$. 则可以利 ...

  6. 题解 [BZOJ2159] Crash的文明世界

    题面 解析 这题一眼换根DP啊 首先,我们考虑一下如何转换\(n^m\)这个式子, 先把式子摆出来吧:\(n^m=\sum_{j=0}^mS(m,j)C_n^jj!\) 其中\(S(m,j)\)表示第 ...

  7. 【BZOJ2159】Crash的文明世界(第二类斯特林数,动态规划)

    [BZOJ2159]Crash的文明世界(第二类斯特林数,动态规划) 题面 BZOJ 洛谷 题解 看到\(k\)次方的式子就可以往二项式的展开上面考,但是显然这样子的复杂度会有一个\(O(k^2)\) ...

  8. 【BZOJ2159】Crash的文明世界

    [2011集训贾志鹏]Crash的文明世界 Description Crash小朋友最近迷上了一款游戏--文明5(Civilization V).在这个游戏中,玩家可以建立和发展自己的国家,通过外交和 ...

  9. P4827「国家集训队」 Crash 的文明世界

    「国家集训队」 Crash 的文明世界 提供一种不需要脑子的方法. 其实是看洛谷讨论版看出来的( (但是全网也就这一篇这个方法的题解了) 首先这是一个关于树上路径的问题,我们可以无脑上点分治. 考虑当 ...

随机推荐

  1. 理解SQL Server中索引的概念,原理以及其他(转载)

    简介 在SQL Server中,索引是一种增强式的存在,这意味着,即使没有索引,SQL Server仍然可以实现应有的功能.但索引可以在大多数情况下大大提升查询性能,在OLAP中尤其明显.要完全理解索 ...

  2. C++ 工程师养成 每日一题fourth (reverse的使用)

    题目: 将一句话的单词进行倒置,标点不倒置. 这道题最简单的解法是使用algorithm提供的reverse()函数 具体步骤我写在代码注释里面: #include <string> #i ...

  3. leetcode动态规划笔记一---一维DP

    动态规划 刷题方法 告别动态规划,连刷 40 道题,我总结了这些套路,看不懂你打我 - 知乎 北美算法面试的题目分类,按类型和规律刷题 题目分类 一维dp House Robber : 求最大最小值 ...

  4. GoLang的概述

    GoLang的概述 1.什么是程序 完成某个功能的指令的集合 2.Go语言的诞生小故事 2.1. 开发团队-三个大牛 2.2.Google创造Golang的原因 2.3.Golang 的发展历程 20 ...

  5. for循环与if条件语句的复习运用

    鉴于前面学了不少基础了,今天没有学新的内容.boyfriend给我出了几道简单的题目,慢慢的进步中. 1.# 计算1-100之间所有偶数的和 def sum(): sumone = 0 for i i ...

  6. springBoot入门到精通-Simple

    https://blog.csdn.net/zhiyikeji/article/details/84346189 1.springBoot前期准备 1.环境配置:jdk,maven 2.编写工具:st ...

  7. Windows下使用MongoDb的经验

    随着NoSql广泛应用MongoDb这个Json数据库现在也被广泛使用,接下来简单介绍一下Windows下如使安装使用MongoDb. 一.安装MongoDb 1.首先去官方网址:(https://w ...

  8. python 3.url了解与基础使用

    URL使用 视图: 我们运行项目在网页上查看到的我们称之为视图 视图一般在views.py下编辑 它的第一个参数永远都是request,通过它请求一些数据返回给网页给我们查看. 视图函数的返回结果必须 ...

  9. 全网最easy的better-scroll实现上拉加载和下拉刷新

    前言 移动端页面常见的一种效果:下拉刷新(pulldownrefresh)和上拉加载(pullupload),目的都是为了增强用户的体验效果,因此各种移动端滑动插件也是层出不穷,今天小编也在这里给大家 ...

  10. 车间管理难?APS系统为你智能排程

    对 APS系统不熟或者不了解他的一些运行规则也是在实施项目中导致经常不能正常运行不可忽视的因素,对 APS系统的早期了解是整个项目实施运行的成功至关重要的因素. 如果不了解 APS潜在的因素和运行准则 ...