无论是network embedding 还是graph embedding都是通过节点(node)和边的图,学出每个节点的embedding向量。

比较流行的算法有:

Model Paper Note
DeepWalk [KDD 2014]DeepWalk: Online Learning of Social Representations 【Graph Embedding】DeepWalk:算法原理,实现和应用
LINE [WWW 2015]LINE: Large-scale Information Network Embedding 【Graph Embedding】LINE:算法原理,实现和应用
Node2Vec [KDD 2016]node2vec: Scalable Feature Learning for Networks 【Graph Embedding】Node2Vec:算法原理,实现和应用
SDNE [KDD 2016]Structural Deep Network Embedding 【Graph Embedding】SDNE:算法原理,实现和应用
Struc2Vec [KDD 2017]struc2vec: Learning Node Representations from Structural Identity 【Graph Embedding】Struc2Vec:算法原理,实现和应用

一般的应用框架如下:

1、构建图: Item和item的共现相似矩阵可以构成一个网络,其中每个item都是节点,相似度达到一定阈值的两个item直接有边连接,相似度达不到阈值的不连接。

2、游走策略: 在网络里面,从一个节点随机走到有连线的下一个节点。走若干步,就得到了一个节点的序列。

deepwalk 选择下一步的概率为该节点连接的所有的边的相似度值取softmax, 也就是scale到0~1的概率值。node2vec 方法结合了DFS和BFS的方式。

3、学embedding 向量:  把随机游走的序列放到word2vec模型里面学,得到每个节点的embedding向量。

4、使用学到的embedding 向量 使用机器学习方法进行分类。

总结链接:https://github.com/shenweichen/GraphEmbedding

 

graph embedding 使用方法的更多相关文章

  1. 推文《阿里凑单算法首次公开!基于Graph Embedding的打包购商品挖掘系统解析》笔记

    推文<阿里凑单算法首次公开!基于Graph Embedding的打包购商品挖掘系统解析>笔记 从17年5月份开始接触Graph Embedding,学术论文读了很多,但是一直不清楚这技术是 ...

  2. 关于embedding-深度学习基本操作 【Word2vec, Item2vec,graph embedding】

    https://zhuanlan.zhihu.com/p/26306795 https://arxiv.org/pdf/1411.2738.pdf https://zhuanlan.zhihu.com ...

  3. Graph Embedding Review:Graph Neural Network(GNN)综述

    作者简介: 吴天龙  香侬科技researcher 公众号(suanfarensheng) 导言 图(graph)是一个非常常用的数据结构,现实世界中很多很多任务可以描述为图问题,比如社交网络,蛋白体 ...

  4. Graph Embedding总结

    图嵌入应用场景:可用于推荐,节点分类,链接预测(link prediction),可视化等场景 一.考虑网络结构 1.DeepWalk (KDD 2014) (1)简介 DeepWalk = Rand ...

  5. 深度解析Graph Embedding

    Graph Embedding是推荐系统.计算广告领域最近非常流行的做法,是从word2vec等一路发展而来的Embedding技术的最新延伸:并且已经有很多大厂将Graph Embedding应用于 ...

  6. GNN 相关资料记录;GCN 与 graph embedding 相关调研;社区发现算法相关;异构信息网络相关;

    最近做了一些和gnn相关的工作,经常听到GCN 和 embedding 相关技术,感觉很是困惑,所以写下此博客,对相关知识进行索引和记录: 参考链接: https://www.toutiao.com/ ...

  7. 论文解读《Cauchy Graph Embedding》

    Paper Information Title:Cauchy Graph EmbeddingAuthors:Dijun Luo, C. Ding, F. Nie, Heng HuangSources: ...

  8. 论文解读(AGE)《Adaptive Graph Encoder for Attributed Graph Embedding》

    论文信息 论文标题:Adaptive Graph Encoder for Attributed Graph Embedding论文作者:Gayan K. Kulatilleke, Marius Por ...

  9. 论文解读(ARVGA)《Learning Graph Embedding with Adversarial Training Methods》

    论文信息 论文标题:Learning Graph Embedding with Adversarial Training Methods论文作者:Shirui Pan, Ruiqi Hu, Sai-f ...

随机推荐

  1. 阿里云ECS服务器设置端口(允许访问设置)

    1.登录阿里云找到对应的服务器按照如下箭头指示: 2.点击“安全组配置”后进入到如下界面,点击“配置规则”进入详情配置界面. 3.点击“修改”可对特定的端口进行访问配置,如下图: 至此结束.

  2. helm笔记

    一.注意事项 1.values.yaml   中可以使用'#'号注释行,而/templates 下的文件不能用#号,如果要注释可以使用 {{/*  context  */}} 2.{{-    #忽略 ...

  3. HDFS重启集群导致数据损坏,使用fsck命令修复过程

    HDFS重启集群导致数据损坏,使用fsck命令修复过程 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 我们先看一组输出 [root@flume112 ~]# hdfs fsck / ...

  4. 用js刷剑指offer(第一个只出现一次的字符)

    题目描述 在一个字符串(0<=字符串长度<=10000,全部由字母组成)中找到第一个只出现一次的字符,并返回它的位置, 如果没有则返回 -1(需要区分大小写). 牛客网链接 js代码 fu ...

  5. P1169 [ZJOI2007]棋盘制作[悬线法/二维dp]

    题目描述 国际象棋是世界上最古老的博弈游戏之一,和中国的围棋.象棋以及日本的将棋同享盛名.据说国际象棋起源于易经的思想,棋盘是一个8 \times 88×8大小的黑白相间的方阵,对应八八六十四卦,黑白 ...

  6. 《你说对就队》第八次团队作业:Alpha冲刺

    <你说对就队>第八次团队作业:Alpha冲刺 项目 内容 这个作业属于哪个课程 [教师博客主页链接] 这个作业的要求在哪里 [作业链接地址] 团队名称 <你说对就队> 作业学习 ...

  7. 《代码敲不队》第九次团队作业:Beta冲刺第1天

    项目 内容 这个作业属于哪个课程 任课教师博客主页链接 这个作业的要求在哪里 作业链接地址 团队名称 代码敲不队 作业学习目标 (1)项目文档的完善与整理:(2)团队项目总结陈述PPT编制:(3)符合 ...

  8. xml文件整理

    xml 97-2003 格式 \s*\n\s*\n\s*\n\s*\n\n(^个人补充信息.*)\n(.*)\n(^总成绩.*)$1$2\n$3(^个人补充信息.*)\n(.*)\n(.*)\n(^总 ...

  9. IKVM

    $ ikvmc -target:library E:\jt400.jar    $ ikvmc -target:library -reference:E:\jt400.dll E:\FTU.jar   ...

  10. 【一起来烧脑】一步React.JS学会体系

    [外链图片转存失败(img-cn4fbVDq-1563575047348)(https://upload-images.jianshu.io/upload_images/11158618-8c6f3d ...