Given an integer array of size n, find all elements that appear more than ⌊ n/3 ⌋ times.

Note: The algorithm should run in linear time and in O(1) space.

Example 1:

Input: [3,2,3]
Output: [3]

Example 2:

Input: [1,1,1,3,3,2,2,2]
Output: [1,2]

169. Majority Element 的拓展,这题要求的是出现次数大于n/3的元素,并且限定了时间和空间复杂度,因此不能排序,不能使用哈希表。

解法:Boyer-Moore多数投票算法 Boyer–Moore majority vote algorithm,T:O(n)  S: O(1) 摩尔投票法 Moore Voting

Java:

public List<Integer> majorityElement(int[] nums) {
if (nums == null || nums.length == 0)
return new ArrayList<Integer>();
List<Integer> result = new ArrayList<Integer>();
int number1 = nums[0], number2 = nums[0], count1 = 0, count2 = 0, len = nums.length;
for (int i = 0; i < len; i++) {
if (nums[i] == number1)
count1++;
else if (nums[i] == number2)
count2++;
else if (count1 == 0) {
number1 = nums[i];
count1 = 1;
} else if (count2 == 0) {
number2 = nums[i];
count2 = 1;
} else {
count1--;
count2--;
}
}
count1 = 0;
count2 = 0;
for (int i = 0; i < len; i++) {
if (nums[i] == number1)
count1++;
else if (nums[i] == number2)
count2++;
}
if (count1 > len / 3)
result.add(number1);
if (count2 > len / 3)
result.add(number2);
return result;
}  

Python:

class Solution:
# @param {integer[]} nums
# @return {integer[]}
def majorityElement(self, nums):
if not nums:
return []
count1, count2, candidate1, candidate2 = 0, 0, 0, 1
for n in nums:
if n == candidate1:
count1 += 1
elif n == candidate2:
count2 += 1
elif count1 == 0:
candidate1, count1 = n, 1
elif count2 == 0:
candidate2, count2 = n, 1
else:
count1, count2 = count1 - 1, count2 - 1
return [n for n in (candidate1, candidate2)
if nums.count(n) > len(nums) // 3]

Python:

class Solution(object):
def majorityElement(self, nums):
"""
:type nums: List[int]
:rtype: List[int]
"""
k, n, cnts = 3, len(nums), collections.defaultdict(int) for i in nums:
cnts[i] += 1
# Detecting k items in cnts, at least one of them must have exactly
# one in it. We will discard those k items by one for each.
# This action keeps the same mojority numbers in the remaining numbers.
# Because if x / n > 1 / k is true, then (x - 1) / (n - k) > 1 / k is also true.
if len(cnts) == k:
for j in cnts.keys():
cnts[j] -= 1
if cnts[j] == 0:
del cnts[j] # Resets cnts for the following counting.
for i in cnts.keys():
cnts[i] = 0 # Counts the occurrence of each candidate integer.
for i in nums:
if i in cnts:
cnts[i] += 1 # Selects the integer which occurs > [n / k] times.
result = []
for i in cnts.keys():
if cnts[i] > n / k:
result.append(i) return result def majorityElement2(self, nums):
"""
:type nums: List[int]
:rtype: List[int]
"""
return [i[0] for i in collections.Counter(nums).items() if i[1] > len(nums) / 3]  

C++:

class Solution {
public:
vector<int> majorityElement(vector<int>& nums) {
vector<int> res;
int m = 0, n = 0, cm = 0, cn = 0;
for (auto &a : nums) {
if (a == m) ++cm;
else if (a ==n) ++cn;
else if (cm == 0) m = a, cm = 1;
else if (cn == 0) n = a, cn = 1;
else --cm, --cn;
}
cm = cn = 0;
for (auto &a : nums) {
if (a == m) ++cm;
else if (a == n) ++cn;
}
if (cm > nums.size() / 3) res.push_back(m);
if (cn > nums.size() / 3) res.push_back(n);
return res;
}
};

C++:

vector<int> majorityElement(vector<int>& nums) {
int cnt1 = 0, cnt2 = 0, a=0, b=1; for(auto n: nums){
if (a==n){
cnt1++;
}
else if (b==n){
cnt2++;
}
else if (cnt1==0){
a = n;
cnt1 = 1;
}
else if (cnt2 == 0){
b = n;
cnt2 = 1;
}
else{
cnt1--;
cnt2--;
}
} cnt1 = cnt2 = 0;
for(auto n: nums){
if (n==a) cnt1++;
else if (n==b) cnt2++;
} vector<int> res;
if (cnt1 > nums.size()/3) res.push_back(a);
if (cnt2 > nums.size()/3) res.push_back(b);
return res;
}

  

  

类似题目:

[LeetCode] 169. Majority Element 多数元素

  

All LeetCode Questions List 题目汇总

[LeetCode] 229. Majority Element II 多数元素 II的更多相关文章

  1. leetcode 229 Majority Element II

    这题用到的基本算法是Boyer–Moore majority vote algorithm wiki里有示例代码 1 import java.util.*; 2 public class Majori ...

  2. LeetCode 229. Majority Element II (众数之二)

    Given an integer array of size n, find all elements that appear more than ⌊ n/3 ⌋ times. The algorit ...

  3. leetcode 229. Majority Element II(多数投票算法)

    就是简单的应用多数投票算法(Boyer–Moore majority vote algorithm),参见这道题的题解. class Solution { public: vector<int& ...

  4. Java for LeetCode 229 Majority Element II

    Given an integer array of size n, find all elements that appear more than ⌊ n/3 ⌋ times. The algorit ...

  5. (medium)LeetCode 229.Majority Element II

    Given an integer array of size n, find all elements that appear more than ⌊ n/3 ⌋ times. The algorit ...

  6. [LeetCode] 169. Majority Element 多数元素

    Given an array of size n, find the majority element. The majority element is the element that appear ...

  7. leetcode 169. Majority Element 、229. Majority Element II

    169. Majority Element 求超过数组个数一半的数 可以使用hash解决,时间复杂度为O(n),但空间复杂度也为O(n) class Solution { public: int ma ...

  8. 【刷题-LeetCode】229. Majority Element II

    Majority Element II Given an integer array of size n, find all elements that appear more than ⌊ n/3 ...

  9. 【LeetCode】229. Majority Element II

    Majority Element II Given an integer array of size n, find all elements that appear more than ⌊ n/3 ...

随机推荐

  1. java服务端的效率

    java服务端的效率 可以的 socketclient  thread 线程池 发送消息  80个socket client并发

  2. 在inux中安装redis的时候,会出现下面的这个异常

    是因为没有安装c++的编译器 安装c++的编译器: yum -y install gcc-c++ 然后再使用命令执行make就可以了 ,如果你遇到这个错误以后,一定要先将redis的解压包删掉以后,再 ...

  3. Sql 数据库 用户密码MD5加密

    直接给代码先 DECLARE @TAB TABLE( NAEM VARCHAR(50) ) DECLARE @PA VARCHAR(50) DECLARE @A VARCHAR(10) SET @A= ...

  4. wordpress调用缩略图/特色图url

    调用缩略图的url <a href="<?php the_post_thumbnail_url( 'full' ); ?>"><?php the_po ...

  5. Map集合迭代的两种方法

    import java.util.HashMap; import java.util.Iterator; import java.util.Map; import java.util.Set; pub ...

  6. SQL Server 父子迭代查询语句,树状查询

    这个也有用: -- Get childs by parent idWITH TreeAS( SELECT Id,ParentId FROM dbo.Node P WHERE P.Id = 21 -- ...

  7. WinDbg常用命令系列---.load, .loadby (Load Extension DLL)

    .load, .loadby (Load Extension DLL) 简介 .load和.loadby命令将新的扩展DLL加载到调试器中. 使用形式 .load DLLName !DLLName.l ...

  8. 限流神器之-Guava RateLimiter 实战

    前段时间,项目中需要对某些访问量较高的路径进行访问并发数控制,以及有些功能,比如Excel导出下载功能,数据量很大的情况下,用户不断的点击下载按钮,重复请求数据库,导致线上数据库挂掉.于是在这样的情况 ...

  9. Python实现 "反转字符串中的元音字母" 的方法

    #coding=utf- def reverseVowels(s): """ :type s: str :rtype: str """ sS ...

  10. python设计模式---绪论

    1.程序只是一个工具,只知道使用工具就有价值的时代正在过去:现在对工作质量.开发速度及完美程度都很重要了.当前主要的问题是对工具的充分利用,在生活的方方面面,简单任务之所以简单是由于这些任务不需要特殊 ...