[LeetCode] 229. Majority Element II 多数元素 II
Given an integer array of size n, find all elements that appear more than ⌊ n/3 ⌋ times.
Note: The algorithm should run in linear time and in O(1) space.
Example 1:
Input: [3,2,3]
Output: [3]
Example 2:
Input: [1,1,1,3,3,2,2,2]
Output: [1,2]
169. Majority Element 的拓展,这题要求的是出现次数大于n/3的元素,并且限定了时间和空间复杂度,因此不能排序,不能使用哈希表。
解法:Boyer-Moore多数投票算法 Boyer–Moore majority vote algorithm,T:O(n) S: O(1) 摩尔投票法 Moore Voting
Java:
public List<Integer> majorityElement(int[] nums) {
if (nums == null || nums.length == 0)
return new ArrayList<Integer>();
List<Integer> result = new ArrayList<Integer>();
int number1 = nums[0], number2 = nums[0], count1 = 0, count2 = 0, len = nums.length;
for (int i = 0; i < len; i++) {
if (nums[i] == number1)
count1++;
else if (nums[i] == number2)
count2++;
else if (count1 == 0) {
number1 = nums[i];
count1 = 1;
} else if (count2 == 0) {
number2 = nums[i];
count2 = 1;
} else {
count1--;
count2--;
}
}
count1 = 0;
count2 = 0;
for (int i = 0; i < len; i++) {
if (nums[i] == number1)
count1++;
else if (nums[i] == number2)
count2++;
}
if (count1 > len / 3)
result.add(number1);
if (count2 > len / 3)
result.add(number2);
return result;
}
Python:
class Solution:
# @param {integer[]} nums
# @return {integer[]}
def majorityElement(self, nums):
if not nums:
return []
count1, count2, candidate1, candidate2 = 0, 0, 0, 1
for n in nums:
if n == candidate1:
count1 += 1
elif n == candidate2:
count2 += 1
elif count1 == 0:
candidate1, count1 = n, 1
elif count2 == 0:
candidate2, count2 = n, 1
else:
count1, count2 = count1 - 1, count2 - 1
return [n for n in (candidate1, candidate2)
if nums.count(n) > len(nums) // 3]
Python:
class Solution(object):
def majorityElement(self, nums):
"""
:type nums: List[int]
:rtype: List[int]
"""
k, n, cnts = 3, len(nums), collections.defaultdict(int) for i in nums:
cnts[i] += 1
# Detecting k items in cnts, at least one of them must have exactly
# one in it. We will discard those k items by one for each.
# This action keeps the same mojority numbers in the remaining numbers.
# Because if x / n > 1 / k is true, then (x - 1) / (n - k) > 1 / k is also true.
if len(cnts) == k:
for j in cnts.keys():
cnts[j] -= 1
if cnts[j] == 0:
del cnts[j] # Resets cnts for the following counting.
for i in cnts.keys():
cnts[i] = 0 # Counts the occurrence of each candidate integer.
for i in nums:
if i in cnts:
cnts[i] += 1 # Selects the integer which occurs > [n / k] times.
result = []
for i in cnts.keys():
if cnts[i] > n / k:
result.append(i) return result def majorityElement2(self, nums):
"""
:type nums: List[int]
:rtype: List[int]
"""
return [i[0] for i in collections.Counter(nums).items() if i[1] > len(nums) / 3]
C++:
class Solution {
public:
vector<int> majorityElement(vector<int>& nums) {
vector<int> res;
int m = 0, n = 0, cm = 0, cn = 0;
for (auto &a : nums) {
if (a == m) ++cm;
else if (a ==n) ++cn;
else if (cm == 0) m = a, cm = 1;
else if (cn == 0) n = a, cn = 1;
else --cm, --cn;
}
cm = cn = 0;
for (auto &a : nums) {
if (a == m) ++cm;
else if (a == n) ++cn;
}
if (cm > nums.size() / 3) res.push_back(m);
if (cn > nums.size() / 3) res.push_back(n);
return res;
}
};
C++:
vector<int> majorityElement(vector<int>& nums) {
int cnt1 = 0, cnt2 = 0, a=0, b=1;
for(auto n: nums){
if (a==n){
cnt1++;
}
else if (b==n){
cnt2++;
}
else if (cnt1==0){
a = n;
cnt1 = 1;
}
else if (cnt2 == 0){
b = n;
cnt2 = 1;
}
else{
cnt1--;
cnt2--;
}
}
cnt1 = cnt2 = 0;
for(auto n: nums){
if (n==a) cnt1++;
else if (n==b) cnt2++;
}
vector<int> res;
if (cnt1 > nums.size()/3) res.push_back(a);
if (cnt2 > nums.size()/3) res.push_back(b);
return res;
}
类似题目:
[LeetCode] 169. Majority Element 多数元素
All LeetCode Questions List 题目汇总
[LeetCode] 229. Majority Element II 多数元素 II的更多相关文章
- leetcode 229 Majority Element II
这题用到的基本算法是Boyer–Moore majority vote algorithm wiki里有示例代码 1 import java.util.*; 2 public class Majori ...
- LeetCode 229. Majority Element II (众数之二)
Given an integer array of size n, find all elements that appear more than ⌊ n/3 ⌋ times. The algorit ...
- leetcode 229. Majority Element II(多数投票算法)
就是简单的应用多数投票算法(Boyer–Moore majority vote algorithm),参见这道题的题解. class Solution { public: vector<int& ...
- Java for LeetCode 229 Majority Element II
Given an integer array of size n, find all elements that appear more than ⌊ n/3 ⌋ times. The algorit ...
- (medium)LeetCode 229.Majority Element II
Given an integer array of size n, find all elements that appear more than ⌊ n/3 ⌋ times. The algorit ...
- [LeetCode] 169. Majority Element 多数元素
Given an array of size n, find the majority element. The majority element is the element that appear ...
- leetcode 169. Majority Element 、229. Majority Element II
169. Majority Element 求超过数组个数一半的数 可以使用hash解决,时间复杂度为O(n),但空间复杂度也为O(n) class Solution { public: int ma ...
- 【刷题-LeetCode】229. Majority Element II
Majority Element II Given an integer array of size n, find all elements that appear more than ⌊ n/3 ...
- 【LeetCode】229. Majority Element II
Majority Element II Given an integer array of size n, find all elements that appear more than ⌊ n/3 ...
随机推荐
- python assert 在正式产品里禁用的手法 直接-O即可
How do I disable assertions in Python? There are multiple approaches that affect a single process, t ...
- python笔记37-史上最好用的发邮件zmail
简介 python发邮件之前用的是smtplib,代码太过于复杂,学习成本大,并且很多人学不会.之前专门写过一篇https://www.cnblogs.com/yoyoketang/p/7277259 ...
- tensorflow Dataset及TFRecord一些要点【持续更新】
关于tensorflow结合Dataset与TFRecord这方面看到挺好一篇文章: https://cloud.tencent.com/developer/article/1088751 githu ...
- Kafka为什么这么快?
批量处理 传统消息中间件的消息发送和消费整体上是针对单条的.对于生产者而言,它先发一条消息,然后broker返回ACK表示已接收,这里产生2次rpc:对于消费者而言,它先请求接受消息,然后broker ...
- 使用selenium谷歌浏览器驱动配置:
from selenium import webdriver#导入谷歌浏览器的chrome_driverchrome_driver = r"C:\python36\Lib\site-pack ...
- area标签的使用,图片中某一个部分可以点击跳转,太阳系中点击某个行星查看具体信息
<!DOCTYPE html> <html> <head> <meta charset="utf-8"> <title> ...
- BZOJ 1034: [ZJOI2008]泡泡堂BNB 贪心+排序
比较神奇的贪心 有点类似于田忌赛马. 如果我方最弱强于对面最弱,则直接最弱pk最弱. 如果我方最强强于对面最强,那么直接最强间pk. 否则,试着用我方最弱 pk 对方最强,看是否能打成平手. code ...
- SVN 常用 还原项目
1.先修改本来两个文件,然后再提交到SVN 2.在日志界面,查看提交的文件,找到对应的版本号 3.找到对应的版本号(这里的版本号是1995,我提交生成的版本号 的前一个版本 才是我未作出修改的版本), ...
- Flutter 简介(事件、路由、异步请求)
1. 前言 Flutter是一个由谷歌开发的开源移动应用软件开发工具包,用于为Android和iOS开发应用,同时也将是Google Fuchsia下开发应用的主要工具.其官方编程语言为Dart. 同 ...
- javascript使用history api防止|阻止页面后退
奇葩需求啥时候都会有,最近有个需求是不允许浏览器回退,但是所有页面都是超链接跳转,于是乎脑壳没转弯就回答了做不到,结果尼玛被打脸了,这打脸的声音太响,终于静下心来看了下history api. 先上代 ...