Given an integer array of size n, find all elements that appear more than ⌊ n/3 ⌋ times.

Note: The algorithm should run in linear time and in O(1) space.

Example 1:

Input: [3,2,3]
Output: [3]

Example 2:

Input: [1,1,1,3,3,2,2,2]
Output: [1,2]

169. Majority Element 的拓展,这题要求的是出现次数大于n/3的元素,并且限定了时间和空间复杂度,因此不能排序,不能使用哈希表。

解法:Boyer-Moore多数投票算法 Boyer–Moore majority vote algorithm,T:O(n)  S: O(1) 摩尔投票法 Moore Voting

Java:

public List<Integer> majorityElement(int[] nums) {
if (nums == null || nums.length == 0)
return new ArrayList<Integer>();
List<Integer> result = new ArrayList<Integer>();
int number1 = nums[0], number2 = nums[0], count1 = 0, count2 = 0, len = nums.length;
for (int i = 0; i < len; i++) {
if (nums[i] == number1)
count1++;
else if (nums[i] == number2)
count2++;
else if (count1 == 0) {
number1 = nums[i];
count1 = 1;
} else if (count2 == 0) {
number2 = nums[i];
count2 = 1;
} else {
count1--;
count2--;
}
}
count1 = 0;
count2 = 0;
for (int i = 0; i < len; i++) {
if (nums[i] == number1)
count1++;
else if (nums[i] == number2)
count2++;
}
if (count1 > len / 3)
result.add(number1);
if (count2 > len / 3)
result.add(number2);
return result;
}  

Python:

class Solution:
# @param {integer[]} nums
# @return {integer[]}
def majorityElement(self, nums):
if not nums:
return []
count1, count2, candidate1, candidate2 = 0, 0, 0, 1
for n in nums:
if n == candidate1:
count1 += 1
elif n == candidate2:
count2 += 1
elif count1 == 0:
candidate1, count1 = n, 1
elif count2 == 0:
candidate2, count2 = n, 1
else:
count1, count2 = count1 - 1, count2 - 1
return [n for n in (candidate1, candidate2)
if nums.count(n) > len(nums) // 3]

Python:

class Solution(object):
def majorityElement(self, nums):
"""
:type nums: List[int]
:rtype: List[int]
"""
k, n, cnts = 3, len(nums), collections.defaultdict(int) for i in nums:
cnts[i] += 1
# Detecting k items in cnts, at least one of them must have exactly
# one in it. We will discard those k items by one for each.
# This action keeps the same mojority numbers in the remaining numbers.
# Because if x / n > 1 / k is true, then (x - 1) / (n - k) > 1 / k is also true.
if len(cnts) == k:
for j in cnts.keys():
cnts[j] -= 1
if cnts[j] == 0:
del cnts[j] # Resets cnts for the following counting.
for i in cnts.keys():
cnts[i] = 0 # Counts the occurrence of each candidate integer.
for i in nums:
if i in cnts:
cnts[i] += 1 # Selects the integer which occurs > [n / k] times.
result = []
for i in cnts.keys():
if cnts[i] > n / k:
result.append(i) return result def majorityElement2(self, nums):
"""
:type nums: List[int]
:rtype: List[int]
"""
return [i[0] for i in collections.Counter(nums).items() if i[1] > len(nums) / 3]  

C++:

class Solution {
public:
vector<int> majorityElement(vector<int>& nums) {
vector<int> res;
int m = 0, n = 0, cm = 0, cn = 0;
for (auto &a : nums) {
if (a == m) ++cm;
else if (a ==n) ++cn;
else if (cm == 0) m = a, cm = 1;
else if (cn == 0) n = a, cn = 1;
else --cm, --cn;
}
cm = cn = 0;
for (auto &a : nums) {
if (a == m) ++cm;
else if (a == n) ++cn;
}
if (cm > nums.size() / 3) res.push_back(m);
if (cn > nums.size() / 3) res.push_back(n);
return res;
}
};

C++:

vector<int> majorityElement(vector<int>& nums) {
int cnt1 = 0, cnt2 = 0, a=0, b=1; for(auto n: nums){
if (a==n){
cnt1++;
}
else if (b==n){
cnt2++;
}
else if (cnt1==0){
a = n;
cnt1 = 1;
}
else if (cnt2 == 0){
b = n;
cnt2 = 1;
}
else{
cnt1--;
cnt2--;
}
} cnt1 = cnt2 = 0;
for(auto n: nums){
if (n==a) cnt1++;
else if (n==b) cnt2++;
} vector<int> res;
if (cnt1 > nums.size()/3) res.push_back(a);
if (cnt2 > nums.size()/3) res.push_back(b);
return res;
}

  

  

类似题目:

[LeetCode] 169. Majority Element 多数元素

  

All LeetCode Questions List 题目汇总

[LeetCode] 229. Majority Element II 多数元素 II的更多相关文章

  1. leetcode 229 Majority Element II

    这题用到的基本算法是Boyer–Moore majority vote algorithm wiki里有示例代码 1 import java.util.*; 2 public class Majori ...

  2. LeetCode 229. Majority Element II (众数之二)

    Given an integer array of size n, find all elements that appear more than ⌊ n/3 ⌋ times. The algorit ...

  3. leetcode 229. Majority Element II(多数投票算法)

    就是简单的应用多数投票算法(Boyer–Moore majority vote algorithm),参见这道题的题解. class Solution { public: vector<int& ...

  4. Java for LeetCode 229 Majority Element II

    Given an integer array of size n, find all elements that appear more than ⌊ n/3 ⌋ times. The algorit ...

  5. (medium)LeetCode 229.Majority Element II

    Given an integer array of size n, find all elements that appear more than ⌊ n/3 ⌋ times. The algorit ...

  6. [LeetCode] 169. Majority Element 多数元素

    Given an array of size n, find the majority element. The majority element is the element that appear ...

  7. leetcode 169. Majority Element 、229. Majority Element II

    169. Majority Element 求超过数组个数一半的数 可以使用hash解决,时间复杂度为O(n),但空间复杂度也为O(n) class Solution { public: int ma ...

  8. 【刷题-LeetCode】229. Majority Element II

    Majority Element II Given an integer array of size n, find all elements that appear more than ⌊ n/3 ...

  9. 【LeetCode】229. Majority Element II

    Majority Element II Given an integer array of size n, find all elements that appear more than ⌊ n/3 ...

随机推荐

  1. python assert 在正式产品里禁用的手法 直接-O即可

    How do I disable assertions in Python? There are multiple approaches that affect a single process, t ...

  2. python笔记37-史上最好用的发邮件zmail

    简介 python发邮件之前用的是smtplib,代码太过于复杂,学习成本大,并且很多人学不会.之前专门写过一篇https://www.cnblogs.com/yoyoketang/p/7277259 ...

  3. tensorflow Dataset及TFRecord一些要点【持续更新】

    关于tensorflow结合Dataset与TFRecord这方面看到挺好一篇文章: https://cloud.tencent.com/developer/article/1088751 githu ...

  4. Kafka为什么这么快?

    批量处理 传统消息中间件的消息发送和消费整体上是针对单条的.对于生产者而言,它先发一条消息,然后broker返回ACK表示已接收,这里产生2次rpc:对于消费者而言,它先请求接受消息,然后broker ...

  5. 使用selenium谷歌浏览器驱动配置:

    from selenium import webdriver#导入谷歌浏览器的chrome_driverchrome_driver = r"C:\python36\Lib\site-pack ...

  6. area标签的使用,图片中某一个部分可以点击跳转,太阳系中点击某个行星查看具体信息

    <!DOCTYPE html> <html> <head> <meta charset="utf-8"> <title> ...

  7. BZOJ 1034: [ZJOI2008]泡泡堂BNB 贪心+排序

    比较神奇的贪心 有点类似于田忌赛马. 如果我方最弱强于对面最弱,则直接最弱pk最弱. 如果我方最强强于对面最强,那么直接最强间pk. 否则,试着用我方最弱 pk 对方最强,看是否能打成平手. code ...

  8. SVN 常用 还原项目

    1.先修改本来两个文件,然后再提交到SVN 2.在日志界面,查看提交的文件,找到对应的版本号 3.找到对应的版本号(这里的版本号是1995,我提交生成的版本号 的前一个版本 才是我未作出修改的版本), ...

  9. Flutter 简介(事件、路由、异步请求)

    1. 前言 Flutter是一个由谷歌开发的开源移动应用软件开发工具包,用于为Android和iOS开发应用,同时也将是Google Fuchsia下开发应用的主要工具.其官方编程语言为Dart. 同 ...

  10. javascript使用history api防止|阻止页面后退

    奇葩需求啥时候都会有,最近有个需求是不允许浏览器回退,但是所有页面都是超链接跳转,于是乎脑壳没转弯就回答了做不到,结果尼玛被打脸了,这打脸的声音太响,终于静下心来看了下history api. 先上代 ...