USACO Grass Planting
洛谷 P3038 [USACO11DEC]牧草种植Grass Planting
JDOJ 2282: USACO 2011 Dec Gold 3.Grass Planting
Description
Problem 3: Grass Planting [Travis Hance, 2011]
Farmer John has N barren pastures (2 <= N <= 100,000) connected by N-1
bidirectional roads, such that there is exactly one path between any two
pastures. Bessie, a cow who loves her grazing time, often complains about
how there is no grass on the roads between pastures. Farmer John loves
Bessie very much, and today he is finally going to plant grass on the
roads. He will do so using a procedure consisting of M steps (1 <= M <=
100,000).
At each step one of two things will happen:
- FJ will choose two pastures, and plant a patch of grass along each road in
between the two pastures, or,
- Bessie will ask about how many patches of grass on a particular road, and
Farmer John must answer her question.
Farmer John is a very poor counter -- help him answer Bessie's questions!
Input
* Line 1: Two space-separated integers N and M
* Lines 2..N: Two space-separated integers describing the endpoints of
a road.
* Lines N+1..N+M: Line i+1 describes step i. The first character of
the line is either P or Q, which describes whether or not FJ
is planting grass or simply querying. This is followed by two
space-separated integers A_i and B_i (1 <= A_i, B_i <= N)
which describe FJ's action or query.
Output
* Lines 1..???: Each line has the answer to a query, appearing in the
same order as the queries appear in the input.
Sample Input
4 6 1 4 2 4 3 4 P 2 3 P 1 3 Q 3 4 P 1 4 Q 2 4 Q 1 4
Sample Output
2 1 2
Source
题目大意:
给定一个有N个节点的树及M个操作:P操作把一条路径上的边权加一,Q操作询问一条路径上的权值和。
题解:
一道树链剖分的题。(板子题都是紫题了为啥这题还是蓝?)
难点有二:
一:边权转点权。
二:路径和的查询。
对于对树链剖分不是和熟悉的小伙伴,推荐下面的这篇博客,里面有对树链剖分的详细讲解。
我们会发现,树链剖分是一个对点权进行操作的东西。
而题目要求是边权。
所以我们要把边权转点权(废话)。
怎么转呢?
我们会发现一条边连着两个点,因为题目保证给出的是一棵树。我们会发现:一个点可能会有很多个儿子(也就是说有很多连着儿子的边),但是每个儿子只有一个父亲。对应地一层一层类比,我们会发现到叶子节点的时候,它连儿子也没有。
那么我们就可以考虑把边权变成其儿子节点的点权,那么根节点的点权为0,而其他所有边的边权都被映射到了一个点上。
截至这里,我们解决了第一个问题。
如果我们到这里就完事的话,我们最终会全WA。
为什么呢?
还是因为题目中询问的是边权。如果是一个路径的话,比如题目中想求得两条边的权值,但是我们映射完了之后会求得3个点的点权,也就意味着,我们多搞了一个答案。这显然是不符合正确性的。
因为我们是向子节点映射,所以我们多加的其实是目标点的LCA那个点的点权。
所以我们考虑把LCA那个点的点权减掉。
那么我们回顾一下树链剖分求LCA的过程(如有不懂还是翻上面的那篇博客)
我们跳来跳去,最后跳的那一次就能求到LCA,也就是说,我们为了维护查询的正确性,需要把最后一次跳跃的更浅的那个节点变成它的子节点。这样就能保证,LCA不会被加进来。
这个操作的正确性是显然的。因为LCA跳到最后,两个节点必然在一条重链上。而根据树链剖分的预处理操作,一条重链上的节点编号是连续的,那么我们寻找LCA进行跳跃的时候,id[x]就是我们的LCA,那么我们把它+1,就会得到它的儿子节点,这样,LCA就不会被加进来。
代码加深理解:
#include<cstdio>
#include<algorithm>
#include<iostream>
#pragma GCC optimize(1)
#pragma GCC optimize(2)
#pragma GCC optimize(3)
#define lson pos<<1
#define rson pos<<1|1
using namespace std;
const int maxn=1e5+1;
int n,m,tot,cnt;
int a[maxn];
int head[maxn],nxt[maxn<<1],to[maxn<<1];
int deep[maxn],size[maxn],son[maxn],fa[maxn];
int top[maxn],id[maxn],w[maxn];
int tree[maxn<<2],lazy[maxn<<2];
void add(int x,int y)
{
to[++tot]=y;
nxt[tot]=head[x];
head[x]=tot;
}
void dfs1(int x,int f)
{
deep[x]=deep[f]+1;
size[x]=1;
fa[x]=f;
for(int i=head[x];i;i=nxt[i])
{
int y=to[i];
if(y==f)
continue;
dfs1(y,x);
size[x]+=size[y];
if(!son[x]||size[y]>size[son[x]])
son[x]=y;
}
}
void dfs2(int x,int t)
{
id[x]=++cnt;
w[cnt]=a[x];
top[x]=t;
if(!son[x])
return;
dfs2(son[x],t);
for(int i=head[x];i;i=nxt[i])
{
int y=to[i];
if(y==fa[x]||y==son[x])
continue;
dfs2(y,y);
}
}
void build(int pos,int l,int r)
{
int mid=(l+r)>>1;
if(l==r)
{
tree[pos]=w[l];
return;
}
build(lson,l,mid);
build(rson,mid+1,r);
tree[pos]=tree[lson]+tree[rson];
}
void mark(int pos,int l,int r,int k)
{
tree[pos]+=(r-l+1)*k;
lazy[pos]+=k;
}
void pushdown(int pos,int l,int r)
{
int mid=(l+r)>>1;
mark(lson,l,mid,lazy[pos]);
mark(rson,mid+1,r,lazy[pos]);
lazy[pos]=0;
}
void update(int pos,int l,int r,int x,int y,int k)
{
int mid=(l+r)>>1;
if(x<=l && r<=y)
{
mark(pos,l,r,k);
return;
}
pushdown(pos,l,r);
if(x<=mid)
update(lson,l,mid,x,y,k);
if(y>mid)
update(rson,mid+1,r,x,y,k);
tree[pos]=tree[lson]+tree[rson];
}
void upd_chain(int x,int y,int k)
{
while(top[x]!=top[y])
{
if(deep[top[x]]<deep[top[y]])
swap(x,y);
update(1,1,n,id[top[x]],id[x],k);
x=fa[top[x]];
}
if(deep[x]<deep[y])
swap(x,y);
update(1,1,n,id[y]+1,id[x],k);
}
int query(int pos,int l,int r,int x,int y)
{
int ret=0;
int mid=(l+r)>>1;
if(x<=l && r<=y)
return tree[pos];
pushdown(pos,l,r);
if(x<=mid)
ret+=query(lson,l,mid,x,y);
if(y>mid)
ret+=query(rson,mid+1,r,x,y);
return ret;
}
int q_chain(int x,int y)
{
int ret=0;
while(top[x]!=top[y])
{
if(deep[top[x]]<deep[top[y]])
swap(x,y);
ret+=query(1,1,n,id[top[x]],id[x]);
x=fa[top[x]];
}
if(deep[x]<deep[y])
swap(x,y);
ret+=query(1,1,n,id[y]+1,id[x]);
return ret;
}
int main()
{
scanf("%d%d",&n,&m);
for(int i=1;i<n;i++)
{
int x,y;
scanf("%d%d",&x,&y);
add(x,y);
add(y,x);
}
dfs1(1,0);
dfs2(1,1);
build(1,1,n);
while(m--)
{
char ch;
cin>>ch;
if(ch=='P')
{
int x,y;
scanf("%d%d",&x,&y);
upd_chain(x,y,1);
}
else
{
int x,y;
scanf("%d%d",&x,&y);
printf("%d\n",q_chain(x,y));
}
}
return 0;
}
USACO Grass Planting的更多相关文章
- spoj - Grass Planting(树链剖分模板题)
Grass Planting 题意 给出一棵树,树有边权.每次给出节点 (u, v) ,有两种操作:1. 把 u 到 v 路径上所有边的权值加 1.2. 查询 u 到 v 的权值之和. 分析 如果这些 ...
- 洛谷P3038 [USACO11DEC]牧草种植Grass Planting
题目描述 Farmer John has N barren pastures (2 <= N <= 100,000) connected by N-1 bidirectional road ...
- [USACO11DEC] Grass Planting (树链剖分)
题目描述 Farmer John has N barren pastures (2 <= N <= 100,000) connected by N-1 bidirectional road ...
- AC日记——[USACO11DEC]牧草种植Grass Planting 洛谷 P3038
题目描述 Farmer John has N barren pastures (2 <= N <= 100,000) connected by N-1 bidirectional road ...
- [Usaco2011 Dec]Grass Planting
Description Farmer John has N barren pastures connected by N-1 bidirectional roads, such that there ...
- 洛谷 P3038 [USACO11DEC]牧草种植Grass Planting
题目描述 Farmer John has N barren pastures (2 <= N <= 100,000) connected by N-1 bidirectional road ...
- P3038 [USACO11DEC]牧草种植Grass Planting
题目描述 Farmer John has N barren pastures (2 <= N <= 100,000) connected by N-1 bidirectional road ...
- [USACO11DEC]Grass Planting
题目大意: 有一棵结点个数为n的树,有m个操作,可以将一段路径上每条边的权值+1或询问某一个边的权值. 思路: 树链剖分+线段树. 轻重链划分本身比较简单,主要需要思考如何用线段树维护每条链. 当x, ...
- 【 SPOJ - GRASSPLA】 Grass Planting (树链剖分+树状数组)
54 种草约翰有 N 个牧场,编号为 1 到 N.它们之间有 N − 1 条道路,每条道路连接两个牧场.通过这些道路,所有牧场都是连通的.刚开始的时候,所有道路都是光秃秃的,没有青草.约翰会在一些道 ...
随机推荐
- eclipse复制bpmn文件到idea下乱码问题处理
1.最近在学习工作流,在eclipse上画完了流程图,然后复制到idea下,发现节点的汉字是乱码的. 2.处理方案是修改idea的配置文件,如图,打开这两个文件,在文件末尾加上 -Dfile.enco ...
- spring 注解AOP
aspectAnnotation的切面信息,加到了AnnotationAwareAspectJAutoProxyCreator的advisorsCache属性里面去了. 解析annotationSe ...
- Java-100天知识进阶-GC算法-知识铺(五)
知识铺: 致力于打造轻知识点,持续更新每次的知识点较少,阅读不累.不占太多时间,不停的来唤醒你记忆深处的知识点. GC算法 1.标记清除算法 优缺点:不需要额外空间,但是遍历空间花费大,而且会产生大量 ...
- golang编译器:gccgo vs gc
GCC是一个功能强大的编译器,不仅可以编译我们很熟悉的C/C++,也可以做为Fortran.Pascal.Objective-C等语言的编译器.而GCCGO则是GCC专门用来编译Golang语言的.G ...
- python asyncio 关闭task
import asyncio import time async def get_html(sleep_times): print("waiting") await asyncio ...
- eclipse快速给表达式生成对应变量的快捷键
这里记录下在Eclipse中快速给表达式生成对应变量的快捷键,有两种方式. [Ctrl + 2] 光标放在该表达式行的任意位置,按[Ctrl+2],会弹出提示,根据提示选择[F/L/R],就会自动生成 ...
- 2019-11-29-WPF-元素裁剪-Clip-属性
原文:2019-11-29-WPF-元素裁剪-Clip-属性 title author date CreateTime categories WPF 元素裁剪 Clip 属性 lindexi 2019 ...
- .net Dapper 学习系列(1) ---Dapper入门
目录 写在前面 为什么选择Dapper 在项目中安装Dapper 在项目中使用Dapper 在项目中使用Dapper 进行单表增删改数据操作 总结 写在前面 Dapper 是一款轻量级ORM架构.为解 ...
- C通过JNI反向调用JAVA程序方法
JNI反向调用JAVA程序 引述:上文讲过java线程---OS线程的关系,然后C怎样反向调用JAVA程序方法是我们这篇讲的重点 1.ThreadTest中添加run()方法 2.编译ThreadTe ...
- win10自动休眠解决方法
win10使用外接显示器时,总是过2分钟自动睡眠. 这是系统无人值守时睡眠时间的设定,默认是两分钟. 解决方法: 1.运行注册表管理器,win+r ,输入regedit.exe 2.定位到HKEY_L ...