链接

loj

luogu太水不要去了。

思路

二分。

每个军队在一定的时间内越往上越好。

注意一个军队可以跨过1去帮别的。

把能到1脚下的点都存下来特判。

有一种情况是这个子树内只有一个军队,但这个军队跑去帮别人了。

其他军队来帮这个子树。

就像这样。



四号点的军队还有2秒钟,而且四号点有两个军队。

2号点有一个军队,还有101秒钟。

三号点没有军队。

四号点的一个军队到2,二号点的的军队到三。

这样的2号点放弃内部去外部的条件是什么?

答案是两倍的边权<剩余时间。

不然的话,四号店可以直接去拯救三号点了。

代码R的范围小了点,卡场过loj

代码

#include <iostream>
#include <vector>
#include <cstdio>
#include <cmath>
#include <algorithm>
#define ll long long
using namespace std;
const int _=3e5+7;
const ll oo=0x3f3f3f3f3f3f3f;
char buf[10000001],*p1=buf,*p2=buf;
#define getchar() (p1==p2&&(p2=(p1=buf)+fread(buf,1,10000000,stdin),p1==p2)?EOF:*p1++)
int read() {
int x=0,f=1;char s=getchar();
for(;s>'9'||s<'0';s=getchar()) if(s=='-') f=-1;
for(;s>='0'&&s<='9';s=getchar()) x=x*10+s-'0';
return x*f;
}
int n,m,pos[_],fa[_][19],vis[_],head[_],tot,ok[_];
ll sum[_],nb[_],cb[_];
struct node {int v,nxt,q;}e[_<<1];
void add(int u,int v,int q) {e[++tot].v=v,e[tot].q=q,e[tot].nxt=head[u],head[u]=tot;}
void init(int u,int f,ll tot) {
fa[u][0]=f,sum[u]=tot;
for(int i=head[u];i;i=e[i].nxt)
if(e[i].v!=f) init(e[i].v,u,tot+e[i].q);
}
bool dfs(int u,int fa) {
if(vis[u]) return 1;
int siz=0;
for(int i=head[u];i;i=e[i].nxt) {
int v=e[i].v;
if(v==fa) continue;
siz++;
if(!dfs(v,u)) return 0;
} return siz;
}
vector<int> dsr[_];
bool cmp(int a,int b) {return sum[a]<sum[b];}
bool check(ll mid) {
for(int i=1;i<=n;++i) vis[i]=ok[i]=0;
for(int i=head[1];i;i=e[i].nxt) dsr[e[i].v].clear();
for(int i=1;i<=m;++i) {
int p=pos[i];
for(int j=18;j>=0;--j)
if(sum[pos[i]]-sum[fa[p][j]]<=mid)
p=fa[p][j];
if(fa[p][0]!=1) vis[p]++;
else dsr[p].push_back(pos[i]);
}
for(int i=head[1];i;i=e[i].nxt) ok[e[i].v]=dfs(e[i].v,1);
for(int i=head[1];i;i=e[i].nxt) sort(dsr[e[i].v].begin(),dsr[e[i].v].end(),cmp);
for(int i=head[1];i;i=e[i].nxt) {
int v=e[i].v;
if(!ok[v] && dsr[v].size()) {
ll x=mid-sum[dsr[v][dsr[v].size()-1]];
if(e[i].q*2LL>=x) dsr[v].pop_back(),ok[v]=1;
}
}
int cnt=0,gs=0;
for(int i=head[1];i;i=e[i].nxt) {
int v=e[i].v;
for(int j=0;j<(int)dsr[v].size();++j)
nb[++cnt]=mid-sum[dsr[v][j]];
if(!ok[v]) cb[++gs]=e[i].q;
}
sort(nb+1,nb+1+cnt,greater<ll>());
sort(cb+1,cb+1+gs,greater<ll>());
if(cnt<gs) return 0;
for(int i=1;i<=gs;++i) if(cb[i]>nb[i]) return 0;
return 1;
}
int main() {
n=read();
for(int i=1;i<n;++i) {
int u=read(),v=read(),w=read();
add(u,v,w),add(v,u,w);
}
m=read();
for(int i=1;i<=m;++i) pos[i]=read();
init(1,0,0);
sum[0]=sum[1]=-oo;
for(int j=1;j<=18;++j)
for(int i=1;i<=n;++i)
fa[i][j]=fa[fa[i][j-1]][j-1];
ll ans=1LL<<35LL;ans--;
for(ll i=35;i>=0;--i)
if(check(ans-(1LL<<i))) ans=ans^(1LL<<i);
if(ans==((1LL<<35LL)-1)) ans=-1;
cout<<ans<<"\n";
return 0;
}

luogu P1084疫情控制 二分的更多相关文章

  1. Luogu P1084 疫情控制 | 二分答案 贪心

    题目链接 观察题目,答案明显具有单调性. 因为如果用$x$小时能够控制疫情,那么用$(x+1)$小时也一定能控制疫情. 由此想到二分答案,将问题转换为判断用$x$小时是否能控制疫情. 对于那些在$x$ ...

  2. LUOGU P1084 疫情控制(二分+贪心+树上倍增)

    传送门 解题思路 比较神的一道题.首先发现是最小值问题,并且具有单调性,所以要考虑二分答案.其次有一个性质是军队越靠上越优,所以我们要将所有的军队尽量向上提,这一过程我们用倍增实现.发现这时有两种军队 ...

  3. 洛谷 P1084 疫情控制 —— 二分+码力

    题目:https://www.luogu.org/problemnew/show/P1084 5个月前曾经写过一次,某个上学日的深夜,精疲力竭后只有区区10分,从此没管... #include< ...

  4. luogu P1084 疫情控制

    传送门 首先,所有军队又要尽量往上走,这样才能尽可能的封锁更多的到叶子的路径 而随着时间的增加,能封锁的路径也就越来越多,所以可以二分最终的时间 然后对于每个时间,就让能走到根的军队走到根,记录到根上 ...

  5. 洛谷P1084 疫情控制(NOIP2012)(二分答案,贪心,树形DP)

    洛谷题目传送门 费了几个小时杠掉此题,如果不是那水水的数据的话,跟列队的难度真的是有得一比... 话说蒟蒻仔细翻了所有的题解,发现巨佬写的都是倍增,复杂度是\(O(n\log n\log nw)\)的 ...

  6. 洛谷P1084 疫情控制 [noip2012] 贪心+树论+二分答案 (还有个小bugQAQ

    正解:贪心+倍增+二分答案 解题报告: 正好想做noip的题目然后又想落实学长之前讲的题?于是就找上了这题 其实之前做过,70,然后实在细节太多太复杂就不了了之,现在再看一遍感觉又一脸懵了... 从标 ...

  7. 2018.09.26洛谷P1084 疫情控制(二分+倍增)

    传送门 好题啊. 题目要求的最大值最小,看到这里自然想到要二分答案. 关键在于怎么检验. 显然对于每个点向根走比向叶节点更优. 因此我们二分答案之后,用倍增将每个点都向上跳到跳不动为止. 这时我们ch ...

  8. [NOIP2012] 提高组 洛谷P1084 疫情控制

    题目描述 H 国有 n 个城市,这 n 个城市用 n-1 条双向道路相互连通构成一棵树,1 号城市是首都, 也是树中的根节点. H 国的首都爆发了一种危害性极高的传染病.当局为了控制疫情,不让疫情扩散 ...

  9. NOIP2012疫情控制(二分答案+树上贪心)

    H 国有n个城市,这 n个城市用n-1条双向道路相互连通构成一棵树,1号城市是首都,也是树中的根节点. H国的首都爆发了一种危害性极高的传染病.当局为了控制疫情,不让疫情扩散到边境城市(叶子节点所表示 ...

随机推荐

  1. 这几款我私藏的Markdown编辑器,今天分享给你

    相信很多人都使用 Markdown 来编写文章,Markdown 语法简洁,使用起来很是方便,而且各大平台几乎都已支持 Markdown 语法 那么,如何选择一款趁手的 Markdown 编辑器,就是 ...

  2. java基础 Unsafe

    参考文章: https://tech.meituan.com/2019/02/14/talk-about-java-magic-class-unsafe.html

  3. 队列和 BFS —— 栈和 DFS

    队列和 BFS: 广度优先搜索(BFS)的一个常见应用是找出从根结点到目标结点的最短路径. 示例 这里我们提供一个示例来说明如何使用 BFS 来找出根结点 A 和目标结点 G 之间的最短路径. 洞悉 ...

  4. [线段树]Luogu P3373 【模板】线段树 2

    #include<cstdio> #include<cstring> #include<algorithm> #define R register #define ...

  5. Elastic Beats介绍

    需要学习的地方:概念,用法,模块使用 Elastic Beats介绍 Elastic Stack传统上由三个主要组件(Elasticsearch,Logstash和Kibana)组成,早已脱离了这种组 ...

  6. SAP MM模块相关透明表收集

    物料表 MCHA 批次表(批次.评估类型 工厂物料) MARA 查看物料数据(发票名称.创建时间.人员) MARC 物料数据查询(利润中心.状态.在途) MAKT 查看物料描述 MKPF 物料抬头 M ...

  7. 【微信原生支付】服务商模式-小微商户专属接口:小微商户新增对应APPID关联API

    文档地址:https://pay.weixin.qq.com/wiki/doc/api/xiaowei.php?chapter=20_3&index=3 这个接口比较特殊不需要nonce_st ...

  8. webapi 集成swagger

    参考资料:Stack Overflow 我自己写的demo:SwaggerDemoApi 在已有的webapi项目或者创建webapi项目中,打开nuget管理器 搜索:swagger 安装截图中的插 ...

  9. IP 跟踪

    #coding=utf-8import sysimport os import re import urllibimport subprocess def getlocation(ip): resul ...

  10. Linux目录和文件——查询目录和文件的命令

    Linux目录和文件——查询目录和文件的命令 摘要:本文主要学习了在Linux系统中是如何查询目录和文件的. which命令 which命令是根据PATH环境变量设置的路径,去搜索执行文件. 基本语法 ...