http://udel.edu/~yuyang/downloads/tr_observabilityII.pdf

Aided Inertial Navigation: Unified Feature Representations and Observability Analysis

Yulin Yang,Guoquan Huang

辅助惯性导航:统一的特征表示和可观察性分析

Extending our recent work [1] that focuses on the observability analysis of aided inertial navigation systems (INS) using homogeneous geometric features including points, lines and planes, in this paper, we complete the analysis for the general aided INS using different combinations of geometric features (i.e., points, lines and planes). We analytically show that the linearized aided INS with different feature combinations generally possess the same observability properties as those with same features, i.e., 4 unobservable directions, corresponding to the global yaw rotation and the global position of the sensor platform. During the analysis, we particularly propose a novel minimal representation of line features, i.e., the “closest point” parameterization, which uses a 4D Euclidean vector to describe a line and is proved to preserve the same observability properties. Based on that, for the first time, we provide two sets of unified representations for points, lines and planes, i.e., the quaternion form and the closest point (CP) form, and perform extensive observability analysis with analytically-computed Jacobians for these unified parameterizations. We validate the proposed CP representations and observability analysis with Monte-Carlo simulations, in which EKF-based vision-aided INS (VINS) with combinations of geometrical features in CP form are developed and compared.

扩展我们最近的工作[1],侧重于使用包括点,线和平面的均匀几何特征的辅助惯性导航系统(INS)的可观测性分析,在本文中,我们使用不同的几何组合完成对一般辅助INS的特征分析 (即点,线和平面)。我们分析地表明,具有不同特征组合的线性化辅助INS通常具有与具有相同特征的那些相同的可观察性,即4个不可观察的方向,对应于全局偏转旋转和传感器平台的全局位置。在分析期间,我们特别提出了线特征的新颖的最小表示,即“最近点”参数化,其使用4D欧几里德矢量来描述线并且被证明保持相同的可观察性属性。在此基础上,我们首次为点,线和平面提供了两组单一表示,即四元数形式和最近点(CP)形式,并对这些单一参数化形式的分析计算雅可比行列式进行了广泛的可观测性分析。我们使用蒙特卡罗模拟验证了所提出的CP表示和可观察性分析,其中开发并比较了具有CP形式的几何特征组合的基于EKF的视觉辅助INS(VINS)。

泡泡一分钟:Aided Inertial Navigation: Unified Feature Representations and Observability Analysis的更多相关文章

  1. 泡泡一分钟:Tightly-Coupled Aided Inertial Navigation with Point and Plane Features

    Tightly-Coupled Aided Inertial Navigation with Point and Plane Features 具有点和平面特征的紧密耦合辅助惯性导航 Yulin Ya ...

  2. 泡泡一分钟:Topomap: Topological Mapping and Navigation Based on Visual SLAM Maps

    Topomap: Topological Mapping and Navigation Based on Visual SLAM Maps Fabian Bl¨ochliger, Marius Feh ...

  3. 泡泡一分钟:Perception-aware Receding Horizon Navigation for MAVs

    作为在空中抛掷四旋翼飞行器后恢复的第一步,它需要检测它使用其加速度计的发射.理想的情况下,在飞行中,加速度计理想地仅测量由于施加的转子推力引起的加速度,即.因此,当四旋翼飞行器发射时,我们可以检测到测 ...

  4. 泡泡一分钟:Semi-Dense Visual-Inertial Odometry and Mapping for Quadrotors with SWAP Constraints

    张宁 Semi-Dense Visual-Inertial Odometry and Mapping for Quadrotors with SWAP Constraints 具有SWAP约束的四旋翼 ...

  5. 泡泡一分钟:Towards real-time unsupervised monocular depth estimation on CPU

    Towards real-time unsupervised monocular depth estimation on CPU Matteo Poggi , Filippo Aleotti , Fa ...

  6. 泡泡一分钟:A Multi-Position Joint Particle Filtering Method for Vehicle Localization in Urban Area

    A Multi-Position Joint Particle Filtering Method for Vehicle Localization in Urban Area 城市车辆定位的多位置联合 ...

  7. 泡泡一分钟:Learning Motion Planning Policies in Uncertain Environments through Repeated Task Executions

    张宁  Learning Motion Planning Policies in Uncertain Environments through Repeated Task Executions 通过重 ...

  8. 泡泡一分钟:Efficient Trajectory Planning for High Speed Flight in Unknown Environments

    张宁  Efficient Trajectory Planning for High Speed Flight in Unknown Environments 高效飞行在未知环境中的有效轨迹规划链接: ...

  9. 泡泡一分钟:Project AutoVision - Localization and 3D Scene Perception for an Autonomous Vehicle with a Multi-Camera System

    Project AutoVision - Localization and 3D Scene Perception for an Autonomous Vehicle with a Multi-Cam ...

随机推荐

  1. 前端学习笔记--js概述与基础语法、变量、数据类型、运算符与表达式

    本篇记录js的概述与基础语法.变量.数据类型.运算符与表达式 1.概述与基础语法 2.变量 举例: 3.数据类型 4.运算符与表达式

  2. git常用命令总结--原创

    0.git status 仓库状态1.git add 工作区-->暂存区2.git commit 暂存区-->版本库3.git log 查看日志4.git reset --hard hea ...

  3. C# 7.0 中的新特性((.NET Framework 4.7 与 Visual Studio 2017 ))

    C#7.0 于 2017年3月 随 .NET 4.7 和 VS2017 发布. 一. out 变量(out variables) 以前我们使用out变量必须在使用前进行声明,C# 7.0 给我们提供了 ...

  4. MySQL InnoDB存储引擎事务的ACID特性

    1.前言 相信工作了一段时间的同学肯定都用过事务,也都听说过事务的4大特性ACID.ACID表示原子性.一致性.隔离性和持久性.一个很好的事务处理系统,必须具备这些标准特性: 原子性(Atomicit ...

  5. Vue模板语法(一)

    Vue模板语法 一 vue简介 Vue.js是一套构建用户界面的渐进式框架. 与其他重量级框架不同的是,Vue 采用自底向上增量开发的设计. Vue 的核心库只关注视图层,并且非常容易学习,非常容易与 ...

  6. flutter ListView 页面滚动组件

    ListView class A scrollable list of widgets arranged linearly. ListView is the most commonly used sc ...

  7. codevs 4028 EZ系列

    4028 EZ系列之愤怒的一天   题目描述 Description 有一天,在某某教学楼某某课室某某课桌旁,某某某大声尖叫起来. 在那一瞬间,勇敢的丁畅大大站了出来,向某某某讨好,结果被揍得半死. ...

  8. codevs:1792分解质因数:编写一个把整数N分解为质因数乘积的程序。

    #include<iostream>#include<cstdio>using namespace std;int main(){ int i=2,n; scanf(" ...

  9. UOJ272. 【清华集训2016】石家庄的工人阶级队伍比较坚强 [FWT]

    UOJ 思路 很容易想到\(O(3^{3m}\log T)\)的暴力大矩乘,显然过不了. 我们分析一下每次转移的性质.题目给的转移方程是填表法,我们试着改成刷表法看看-- 发现好像没啥用. 注意到游戏 ...

  10. python 中 list 去重复

    方法1 list=[,,,] set=set(list) list2=list(set) 方法2 list=[,,,] list2=[] for i in list: if i not in list ...