【题解】保安站岗[P2458]皇宫看守[LOJ10157][SDOI2006]

传送门:皇宫看守\([LOJ10157]\) 保安站岗 \([P2458]\) \([SDOI2006]\)

【题目描述】

给你一棵树,要求树上每个点都要有人看守,在不同的点安排守卫所需 \(Monney\) 不同。

守卫站在某个端点上时,他除了能看守住他所站的那个点,也能看守通过一条边与之相连的另一个端点,因此一个守卫可能同时能看守住多个点,因此没有必要在每个端点上都安排守卫。

要求在能够看守住所有点的前提下,使得花费的 \(Monney\) 最少。

【输入】

第 \(1\) 行一个整数 \(n\),表示树中节点的数目。

接下来 \(n\) 行,每行描述每个结点的信息,依次为:该结点标号 \(i\),在该结点安置保安所需的经费 \(k_i\),该边的儿子数 \(m\),接下来 \(m\) 个数,分别是这个节点的 \(m\) 个儿子的标号 \(r_1,r_2,r_3...r_m\)。

对于一个 \(n\) 个结点的树,其结点标号在 \(1\) 到 \(n\) 之间,且标号不重复。

【输出】

输出一行一个整数,表示花费的最少 \(Monney\) 。

【样例】

样例输入:
6
1 30 3 2 3 4
2 16 2 5 6
3 5 0
4 4 0
5 11 0
6 5 0 样例输出:
25

【数据范围】

\(100\%\) \(1 \leqslant N \leqslant 1500,1 \leqslant k_i \leqslant 10000\)


【分析】

一道经典的树形 \(dp\) 。

用 \(dp[i][0]\) 表示:自己不是守卫,父亲不是守卫,儿子是守卫

用 \(dp[i][1]\) 表示:自己是守卫,父亲不知道,儿子不知道

用 \(dp[i][2]\) 表示:自己不是守卫,父亲是守卫,儿子不知道

在树上 \(dfs\) 遍历。

每到达一个 \(x\),先对其进行初始化:\(dp[x][1]=w[x],dp[x][2]=dp[x][0]=0\)(其中 \(w[x]\) 为在 \(x\) 这个位置放守卫所需 \(Monney\))。

然后遍历它的若干个儿子结点,更新三个 \(dp[x][?]\):

\((1).\) \(dp[x][1]\):\(x\) 是守卫,\(x\) 的父亲不知道,\(x\) 的儿子 \(to\) 不知道

对于 \(to\) 来说,\(to\) 的父亲一定是守卫,所以 \(dp[to][0]\) 就不统计了,于是有:\(dp[x][1]=\sum_{to \in son[x]} min(dp[to][1],dp[to][2])\)

\((2).\) \(dp[x][2]\):\(x\) 不是守卫,\(x\) 的父亲是守卫,\(x\) 的儿子 \(to\) 不知道

对于 \(to\) 来说,\(to\) 的父亲不可能是守卫,于是有:\(dp[x][2]=\sum_{to \in son[x]} min(dp[to][1],dp[to][0])\)

\((3).\) \(dp[x][0]\):\(x\) 不是守卫,\(x\) 的父亲不是守卫,\(x\) 的儿子 \(to\) 是守卫

这是最复杂的情况,需要在 \(son[x]\) 选出一个 \(dp[to][1]\),而其他的儿子则是 \(min(dp[to][1],dp[to][0])\)。

可以对所有儿子维护一个 \(dp[to][1]\) 与 \(min(dp[to][1],dp[to][0])\) 的差值 \(dd\),然后在最后把最小的差值 \(dd_{min}\) 加到 \(dp[to][0]\) 上即可。

于是 \(dd={(dp[r][1]-min(dp[r][0],dp[to][1]))}^{r \in son[x]}_{min},\) \(dp[to][0]=\sum_{to \in son[x]} min(dp[r][1],dp[r][0])+dd\)

【Code】

#include<algorithm>
#include<cstring>
#include<cstdio>
#define R register int
using namespace std;
struct QAQ{int to,next;}a[1505];
int m,pan[1505],n,t,w[1505],dp[1505][3],head[1505];
inline void add(int x,int y){a[++t].to=y,a[t].next=head[x],head[x]=t;}
//dp[i][0] 自己不是守卫,父亲不是守卫,儿子是守卫
//dp[i][1] 自己是守卫, 父亲不知道, 儿子不知道
//dp[i][2] 自己不是守卫,父亲是守卫, 儿子不知道
inline void dfs(int x){
R i,to,dd=0xfffffff;
dp[x][1]=w[x];dp[x][2]=0;dp[x][0]=0;
for(i=head[x];i;i=a[i].next){
dfs(to=a[i].to);
dd=min(dd,dp[to][1]-min(dp[to][0],dp[to][1]));//维护最小的差值
dp[x][0]+=min(dp[to][0],dp[to][1]);
//若x守卫是儿子dp[x][0],找到花费最小的dd 加上其他的儿子:min(1.孙子dp[to][0]。2.自己dp[to][1]。)
dp[x][1]+=min(dp[to][1],dp[to][2]);
//若x有守卫dp[x][1],加上儿子:min(1.父亲dp[to][2]。2.自己dp[to][1]。)
dp[x][2]+=min(dp[to][0],dp[to][1]);
//若守卫是父亲dp[x][2],加上儿子:min(1.孙子dp[to][0]。2.自己dp[to][1]。)
}
dp[x][0]+=dd;
}
int main(){
memset(dp,127,sizeof(dp));
scanf("%d",&n);
R i,j,a,k,r;
for(i=1;i<=n;i++){
scanf("%d%d%d",&a,&k,&m);w[a]=k;
for(j=1;j<=m;j++)scanf("%d",&r),pan[r]=1,add(a,r);
}
for(i=1;i<=n;i++)
if(!pan[i]){
dfs(i);
printf("%d",min(dp[i][1],dp[i][0]));
return 0;
}
}

【题解】保安站岗[P2458]皇宫看守[LOJ10157][SDOI2006]的更多相关文章

  1. C++ 洛谷 P2458 [SDOI2006]保安站岗 from_树形DP

    P2458 [SDOI2006]保安站岗 没学树形DP的,看一下. 题目大意:一棵树有N个节点,现在需要将所有节点都看守住,如果我们选择了节点i,那么节点i本身,节点i的父亲和儿子都会被看守住. 每个 ...

  2. Luogu P2458 [SDOI2006]保安站岗(树形dp)

    P2458 [SDOI2006]保安站岗 题意 题目描述 五一来临,某地下超市为了便于疏通和指挥密集的人员和车辆,以免造成超市内的混乱和拥挤,准备临时从外单位调用部分保安来维持交通秩序. 已知整个地下 ...

  3. 【Luogu2458】保安站岗(动态规划)

    [Luogu2458]保安站岗(动态规划) 题面 题目描述 五一来临,某地下超市为了便于疏通和指挥密集的人员和车辆,以免造成超市内的混乱和拥挤,准备临时从外单位调用部分保安来维持交通秩序. 已知整个地 ...

  4. 洛谷【P2458】[SDOI2006]保安站岗 题解 树上DP

    题目描述 五一来临,某地下超市为了便于疏通和指挥密集的人员和车辆,以免造成超市内的混乱和拥挤,准备临时从外单位调用部分保安来维持交通秩序. 已知整个地下超市的所有通道呈一棵树的形状:某些通道之间可以互 ...

  5. P2458 [SDOI2006]保安站岗[树形dp]

    题目描述 五一来临,某地下超市为了便于疏通和指挥密集的人员和车辆,以免造成超市内的混乱和拥挤,准备临时从外单位调用部分保安来维持交通秩序. 已知整个地下超市的所有通道呈一棵树的形状:某些通道之间可以互 ...

  6. Luogu P2458 [SDOI2006]保安站岗【树形Dp】

    题目描述 五一来临,某地下超市为了便于疏通和指挥密集的人员和车辆,以免造成超市内的混乱和拥挤,准备临时从外单位调用部分保安来维持交通秩序. 已知整个地下超市的所有通道呈一棵树的形状:某些通道之间可以互 ...

  7. 洛谷 P2458 [SDOI2006]保安站岗

    题目传送门 解题思路: 树形DP 可知一个点被控制有且仅有一下三种情况: 1.被父亲节点上的保安控制 2.被儿子节点上的保安控制 3.被当前节点上的保安控制 我们设dp[0/1/2][u]表示u节点所 ...

  8. [Luogu][P2458] [SDOI2006]保安站岗

    题目链接 看起来似乎跟最小点覆盖有点像.但区别在于: 最小点覆盖要求所有边在其中,而本题要求所有点在其中. 即:一个点不选时,它的儿子不一定需要全选. 画图理解: 对于这样一幅图,本题中可以这样选择: ...

  9. [luogu 2458][SDOI2006]保安站岗

    题目描述 五一来临,某地下超市为了便于疏通和指挥密集的人员和车辆,以免造成超市内的混乱和拥挤,准备临时从外单位调用部分保安来维持交通秩序. 已知整个地下超市的所有通道呈一棵树的形状:某些通道之间可以互 ...

随机推荐

  1. FPM 1.1正式版 Search & List

    前面写的FPM都是自己练习用的.直到自己正式用了一个,才发现一些小问题.feeder class写在一起和分开写有好有坏,这里就不说了. 自己做了个小的查询报表如下: 现在来按SAP官方的做法来重新做 ...

  2. ORACLE ORION测试IO性能

    https://www.oracle.com/technetwork/cn/topics/index-088165-zhs.html 下载地址 Orion是Oracle提供的IO性能测试工具,运行该工 ...

  3. pip install报错:RuntimeError: Python version >= 3.5 required

    由于pip官方的不作为,现如今python2(以及某些低版本python3)配套的pip,已经没法正常的安装pypi包了. 例如需要用到的一套PyCaffe的代码,是基于Python2的,于是用min ...

  4. hOW TO READING

    人脑是易忘的,新知识要不断复习,一本600页的书,总结出来要记住的知识可能只有30页.一段2小时的技术视频,总结到纸上可能只有10分钟的阅读量.那么如何复习这600页的书和2小时的视频呢? 答案就是总 ...

  5. 迁移生产环境的GItLab11.3.5到新的服务器

    在新的服务器上 rpm安装git 首先停止,Gitlab服务 root@localhost # gitlab-ctl stop 参考了 以下链接: https://blog.csdn.net/liul ...

  6. C#8.0接口默认实现特性

    文章:[译]C#8.0中一个使接口更加灵活的新特性-默认接口实现 原文示例代码: public interface IBook { void AddBook(string bookName, stri ...

  7. LCD硬件原理

    想象一下,屏幕的后面有一个电子枪,电子枪位于某个像素的背后,然后向这个像素发射红绿蓝三原色,从而就可以组成任意一种颜色.简单的说,电子枪在像素的背后一边移动,一边向像素发射红绿蓝. 如果要编写出LCD ...

  8. 《浅谈我眼中的express、koa和koa2》好文留存+笔记

    原文 :三英战豪强,思绪走四方.浅谈我眼中的express.koa和koa2 一.回调大坑怎么解决呢? 1.es5可以利用一下第三方库,例如 async 库, 2.或者单纯使用 connect中间件  ...

  9. 防御流类型的xss攻击

    1.建立一个工具类 package im.lsn.oss.exhibition.utils; import org.apache.commons.lang3.StringUtils; import j ...

  10. java 监控文件夹 WatchService

    原文链接 :http://blog.csdn.net/lirx_tech/article/details/51425364 public class WacthFileUtil { public st ...