【题解】保安站岗[P2458]皇宫看守[LOJ10157][SDOI2006]

传送门:皇宫看守\([LOJ10157]\) 保安站岗 \([P2458]\) \([SDOI2006]\)

【题目描述】

给你一棵树,要求树上每个点都要有人看守,在不同的点安排守卫所需 \(Monney\) 不同。

守卫站在某个端点上时,他除了能看守住他所站的那个点,也能看守通过一条边与之相连的另一个端点,因此一个守卫可能同时能看守住多个点,因此没有必要在每个端点上都安排守卫。

要求在能够看守住所有点的前提下,使得花费的 \(Monney\) 最少。

【输入】

第 \(1\) 行一个整数 \(n\),表示树中节点的数目。

接下来 \(n\) 行,每行描述每个结点的信息,依次为:该结点标号 \(i\),在该结点安置保安所需的经费 \(k_i\),该边的儿子数 \(m\),接下来 \(m\) 个数,分别是这个节点的 \(m\) 个儿子的标号 \(r_1,r_2,r_3...r_m\)。

对于一个 \(n\) 个结点的树,其结点标号在 \(1\) 到 \(n\) 之间,且标号不重复。

【输出】

输出一行一个整数,表示花费的最少 \(Monney\) 。

【样例】

样例输入:
6
1 30 3 2 3 4
2 16 2 5 6
3 5 0
4 4 0
5 11 0
6 5 0 样例输出:
25

【数据范围】

\(100\%\) \(1 \leqslant N \leqslant 1500,1 \leqslant k_i \leqslant 10000\)


【分析】

一道经典的树形 \(dp\) 。

用 \(dp[i][0]\) 表示:自己不是守卫,父亲不是守卫,儿子是守卫

用 \(dp[i][1]\) 表示:自己是守卫,父亲不知道,儿子不知道

用 \(dp[i][2]\) 表示:自己不是守卫,父亲是守卫,儿子不知道

在树上 \(dfs\) 遍历。

每到达一个 \(x\),先对其进行初始化:\(dp[x][1]=w[x],dp[x][2]=dp[x][0]=0\)(其中 \(w[x]\) 为在 \(x\) 这个位置放守卫所需 \(Monney\))。

然后遍历它的若干个儿子结点,更新三个 \(dp[x][?]\):

\((1).\) \(dp[x][1]\):\(x\) 是守卫,\(x\) 的父亲不知道,\(x\) 的儿子 \(to\) 不知道

对于 \(to\) 来说,\(to\) 的父亲一定是守卫,所以 \(dp[to][0]\) 就不统计了,于是有:\(dp[x][1]=\sum_{to \in son[x]} min(dp[to][1],dp[to][2])\)

\((2).\) \(dp[x][2]\):\(x\) 不是守卫,\(x\) 的父亲是守卫,\(x\) 的儿子 \(to\) 不知道

对于 \(to\) 来说,\(to\) 的父亲不可能是守卫,于是有:\(dp[x][2]=\sum_{to \in son[x]} min(dp[to][1],dp[to][0])\)

\((3).\) \(dp[x][0]\):\(x\) 不是守卫,\(x\) 的父亲不是守卫,\(x\) 的儿子 \(to\) 是守卫

这是最复杂的情况,需要在 \(son[x]\) 选出一个 \(dp[to][1]\),而其他的儿子则是 \(min(dp[to][1],dp[to][0])\)。

可以对所有儿子维护一个 \(dp[to][1]\) 与 \(min(dp[to][1],dp[to][0])\) 的差值 \(dd\),然后在最后把最小的差值 \(dd_{min}\) 加到 \(dp[to][0]\) 上即可。

于是 \(dd={(dp[r][1]-min(dp[r][0],dp[to][1]))}^{r \in son[x]}_{min},\) \(dp[to][0]=\sum_{to \in son[x]} min(dp[r][1],dp[r][0])+dd\)

【Code】

#include<algorithm>
#include<cstring>
#include<cstdio>
#define R register int
using namespace std;
struct QAQ{int to,next;}a[1505];
int m,pan[1505],n,t,w[1505],dp[1505][3],head[1505];
inline void add(int x,int y){a[++t].to=y,a[t].next=head[x],head[x]=t;}
//dp[i][0] 自己不是守卫,父亲不是守卫,儿子是守卫
//dp[i][1] 自己是守卫, 父亲不知道, 儿子不知道
//dp[i][2] 自己不是守卫,父亲是守卫, 儿子不知道
inline void dfs(int x){
R i,to,dd=0xfffffff;
dp[x][1]=w[x];dp[x][2]=0;dp[x][0]=0;
for(i=head[x];i;i=a[i].next){
dfs(to=a[i].to);
dd=min(dd,dp[to][1]-min(dp[to][0],dp[to][1]));//维护最小的差值
dp[x][0]+=min(dp[to][0],dp[to][1]);
//若x守卫是儿子dp[x][0],找到花费最小的dd 加上其他的儿子:min(1.孙子dp[to][0]。2.自己dp[to][1]。)
dp[x][1]+=min(dp[to][1],dp[to][2]);
//若x有守卫dp[x][1],加上儿子:min(1.父亲dp[to][2]。2.自己dp[to][1]。)
dp[x][2]+=min(dp[to][0],dp[to][1]);
//若守卫是父亲dp[x][2],加上儿子:min(1.孙子dp[to][0]。2.自己dp[to][1]。)
}
dp[x][0]+=dd;
}
int main(){
memset(dp,127,sizeof(dp));
scanf("%d",&n);
R i,j,a,k,r;
for(i=1;i<=n;i++){
scanf("%d%d%d",&a,&k,&m);w[a]=k;
for(j=1;j<=m;j++)scanf("%d",&r),pan[r]=1,add(a,r);
}
for(i=1;i<=n;i++)
if(!pan[i]){
dfs(i);
printf("%d",min(dp[i][1],dp[i][0]));
return 0;
}
}

【题解】保安站岗[P2458]皇宫看守[LOJ10157][SDOI2006]的更多相关文章

  1. C++ 洛谷 P2458 [SDOI2006]保安站岗 from_树形DP

    P2458 [SDOI2006]保安站岗 没学树形DP的,看一下. 题目大意:一棵树有N个节点,现在需要将所有节点都看守住,如果我们选择了节点i,那么节点i本身,节点i的父亲和儿子都会被看守住. 每个 ...

  2. Luogu P2458 [SDOI2006]保安站岗(树形dp)

    P2458 [SDOI2006]保安站岗 题意 题目描述 五一来临,某地下超市为了便于疏通和指挥密集的人员和车辆,以免造成超市内的混乱和拥挤,准备临时从外单位调用部分保安来维持交通秩序. 已知整个地下 ...

  3. 【Luogu2458】保安站岗(动态规划)

    [Luogu2458]保安站岗(动态规划) 题面 题目描述 五一来临,某地下超市为了便于疏通和指挥密集的人员和车辆,以免造成超市内的混乱和拥挤,准备临时从外单位调用部分保安来维持交通秩序. 已知整个地 ...

  4. 洛谷【P2458】[SDOI2006]保安站岗 题解 树上DP

    题目描述 五一来临,某地下超市为了便于疏通和指挥密集的人员和车辆,以免造成超市内的混乱和拥挤,准备临时从外单位调用部分保安来维持交通秩序. 已知整个地下超市的所有通道呈一棵树的形状:某些通道之间可以互 ...

  5. P2458 [SDOI2006]保安站岗[树形dp]

    题目描述 五一来临,某地下超市为了便于疏通和指挥密集的人员和车辆,以免造成超市内的混乱和拥挤,准备临时从外单位调用部分保安来维持交通秩序. 已知整个地下超市的所有通道呈一棵树的形状:某些通道之间可以互 ...

  6. Luogu P2458 [SDOI2006]保安站岗【树形Dp】

    题目描述 五一来临,某地下超市为了便于疏通和指挥密集的人员和车辆,以免造成超市内的混乱和拥挤,准备临时从外单位调用部分保安来维持交通秩序. 已知整个地下超市的所有通道呈一棵树的形状:某些通道之间可以互 ...

  7. 洛谷 P2458 [SDOI2006]保安站岗

    题目传送门 解题思路: 树形DP 可知一个点被控制有且仅有一下三种情况: 1.被父亲节点上的保安控制 2.被儿子节点上的保安控制 3.被当前节点上的保安控制 我们设dp[0/1/2][u]表示u节点所 ...

  8. [Luogu][P2458] [SDOI2006]保安站岗

    题目链接 看起来似乎跟最小点覆盖有点像.但区别在于: 最小点覆盖要求所有边在其中,而本题要求所有点在其中. 即:一个点不选时,它的儿子不一定需要全选. 画图理解: 对于这样一幅图,本题中可以这样选择: ...

  9. [luogu 2458][SDOI2006]保安站岗

    题目描述 五一来临,某地下超市为了便于疏通和指挥密集的人员和车辆,以免造成超市内的混乱和拥挤,准备临时从外单位调用部分保安来维持交通秩序. 已知整个地下超市的所有通道呈一棵树的形状:某些通道之间可以互 ...

随机推荐

  1. bugku秋名山老司机+写博客的第一天

    bugku之秋名山老司机 题目连接:http://123.206.87.240:8002/qiumingshan/ 一点进去是这样的 请在两秒内计算这个式子...怎么可能算的出来 查看源码,无果.. ...

  2. (原)Ubuntu安装TensorRT

    转载请注明出处: https://www.cnblogs.com/darkknightzh/p/11129472.html 参考网址: https://docs.nvidia.com/deeplear ...

  3. rhel7学习第五天

    管道命令符的功能的确强大!

  4. 剑指offer-08 二叉树的下一个节点

    剑指offer第8题,本来想找leetcode上对应的题,后来没找到,直接去牛客网上刷了. 题目描述: 给定一个二叉树和其中的一个结点(pNode),请找出中序遍历顺序的下一个结点并且返回.注意,树中 ...

  5. python中列表(list)函数及使用

    序列是Python中最基本的数据结构.序列中的每个元素都分配一个数字 - 它的位置,或索引,第一个索引是0,第二个索引是1,依此类推. Python有6个序列的内置类型,但最常见的是列表和元组. 序列 ...

  6. Kinect v2控制鼠标原理分析和源码

    https://blog.csdn.net/baolinq/article/details/54381284 此程序为利用Kinect v2实现用手指隔空控制鼠标,是我另一个项目的一部分,因为在另外那 ...

  7. university-conda

    1.建立环境 conda create -n djx python=3.7 2.激活 conda activate djx 3.退出 conda deactivate 4.查看 conda env l ...

  8. ESA2GJK1DH1K基础篇: STM32+GPRS(AT指令版)实现MQTT源码讲解(支持Air202,SIM800)

    前言 注: 本程序发送心跳包,发送温湿度,返回控制数据这三个发送是单独的,有可能凑到一起发. 由于本身程序就是复杂性的程序,所以这节程序没有使用中断发送,没有使用环形队列发送,为了避免多条消息可能凑到 ...

  9. ESA2GJK1DH1K基础篇: 测试APP扫描Air202上面的二维码绑定通过MQTT控制设备(兼容SIM800)

    前言 此程序兼容SIM800 如果想绑定SIM800,请把其IMEI号,生成二维码,用手机APP扫描. 实现功能概要 APP通过扫描二维码获取GPRS设备的IMEI号,然后设置订阅的主题:device ...

  10. CF1120D Power Tree(构造题,差分,最小生成树)

    很有趣的一道题. 首先可以对每个叶子进行编号.按照DFS到的顺序即可.(假设从 $1$ 到 $k$) 然后对每个点求出它管辖的所有叶子的编号.因为是DFS序所以这一定是个区间.设点 $u$ 的这个区间 ...