题目描述:

我们给出 S,一个源于 {'D', 'I'} 的长度为 n 的字符串 。(这些字母代表 “减少” 和 “增加”。)
有效排列 是对整数 {0, 1, ..., n} 的一个排列 P[0], P[1], ..., P[n],使得对所有的 i:

如果 S[i] == 'D',那么 P[i] > P[i+1],以及;
如果 S[i] == 'I',那么 P[i] < P[i+1]。
有多少个有效排列?因为答案可能很大,所以请返回你的答案模 10^9 + 7.

示例:

输入:"DID"
输出:5
解释:
(0, 1, 2, 3) 的五个有效排列是:
(1, 0, 3, 2)
(2, 0, 3, 1)
(2, 1, 3, 0)
(3, 0, 2, 1)
(3, 1, 2, 0)

提示:

  1. 1 <= S.length <= 200
  2. S 仅由集合 {'D', 'I'} 中的字符组成。

思路分析:

我们用 dp(i, j) 表示确定了排列中到 P[i] 为止的前 i + 1 个元素,并且 P[i] 和未选择元素的相对大小为 j 的方案数(即未选择的元素中,有 j 个元素比 P[i] 小)。在状态转移时,dp(i, j) 会从 dp(i - 1, k) 转移而来,其中 k 代表了 P[i - 1] 的相对大小。如果 S[i - 1] 为 D,那么 k 不比 j 小;如果 S[i - 1] 为 I,那么 k 必须比 j 小。

代码:

 class Solution {
public:
int mod = 1e9+;
int numPermsDISequence(string S) {
int n = S.size();
if(n==)
return ;
vector<vector<int>> dp(n+, vector<int>(n+, ));
for(int i=; i<n+; i++)
dp[][i]=;
for(int i=; i<=n; i++)
{
for(int j=; j<=i; j++)
{
if(S[i-]=='D')
{
for(int k=j; k<i; k++)
{
dp[i][j] += dp[i-][k];
dp[i][j] %= mod;
}
}
else
{
for(int k=; k<j; k++)
{
dp[i][j] += dp[i-][k];
dp[i][j] %= mod;
}
}
}
}
int ans = ;
for(int i=; i<=n; i++)
{
ans += dp[n][i];
ans %= mod;
}
return ans;
}
};

leetcode 903. DI序列的有效排列的更多相关文章

  1. [LeetCode] 903. Valid Permutations for DI Sequence DI序列的有效排列

    We are given S, a length n string of characters from the set {'D', 'I'}. (These letters stand for &q ...

  2. [Swift]LeetCode903. DI 序列的有效排列 | Valid Permutations for DI Sequence

    We are given S, a length n string of characters from the set {'D', 'I'}. (These letters stand for &q ...

  3. [LeetCode] Permutation Sequence 序列排序

    The set [1,2,3,…,n] contains a total of n! unique permutations. By listing and labeling all of the p ...

  4. [LeetCode] Sequence Reconstruction 序列重建

    Check whether the original sequence org can be uniquely reconstructed from the sequences in seqs. Th ...

  5. [leetcode](4.21)2. 按字典序排列最小的等效字符串

    给出长度相同的两个字符串:A 和 B,其中 A[i] 和 B[i] 是一组等价字符.举个例子,如果 A = "abc" 且 B = "cde",那么就有 'a' ...

  6. Leetcode题库——31.下一个排列

    @author: ZZQ @software: PyCharm @file: nextPermutation.py @time: 2018/11/12 15:32 要求: 实现获取下一个排列的函数,算 ...

  7. #leetcode刷题之路47-全排列 II

    给定一个可包含重复数字的序列,返回所有不重复的全排列.示例:输入: [1,1,2]输出:[ [1,1,2], [1,2,1], [2,1,1]] 之前的https://www.cnblogs.com/ ...

  8. [LeetCode] 31. Next Permutation 下一个排列

    Implement next permutation, which rearranges numbers into the lexicographically next greater permuta ...

  9. LeetCode——376.摆动序列

    如果连续数字之间的差严格地在正数和负数之间交替,则数字序列称为摆动序列.第一个差(如果存在的话)可能是正数或负数.少于两个元素的序列也是摆动序列. 例如, [1,7,4,9,2,5] 是一个摆动序列, ...

随机推荐

  1. sentry 9.1.1docker版onepremise过程记录

    sentry安装:https://github.com/getsentry/onpremise正确使用此文档安装步骤,安装版本9.1.1-onbuild,这个需要自改Dockerfile. 备注:构建 ...

  2. 搭建rsyslog日志服务器

    环境配置 centos7系统 client1:192.168.91.17 centos7系统 master:192.168.91.18 rsyslog客户端配置 1.rsyslog安装 yum ins ...

  3. docker安装kafka

    文本摘自此文章 .kafka需要zookeeper管理,所以需要先安装zookeeper. 下载zookeeper镜像 $ docker pull wurstmeister/zookeeper .启动 ...

  4. Log4基本配置

    前言:作为一个程序员你要学会调试,对于一种调试都无法找到问题所在的情况,你要学会看日志,要学会看日志你的学会怎么样去写入日志,接下来教你配置C#Log4 第一步,你的在配置文件中配置好对应的参数 &l ...

  5. python3模块

    一.sys模块 import sys #print(sys.path) #打印环境变量 #print(sys.argv) print(sys.argv[3]) Sys.argv[ ]其实就是一个列表, ...

  6. DevExpress的TreeList的常用属性设置以及常用事件

    场景 Winform控件-DevExpress18下载安装注册以及在VS中使用: https://blog.csdn.net/BADAO_LIUMANG_QIZHI/article/details/1 ...

  7. CSS animation属性

    定义和用法 animation属性是下列属性的一个缩写属性: animation-name animation-duration animation-timing-function animation ...

  8. asp.net core 系列 2 启动类 Startup.CS

    学无止境,精益求精 十年河东,十年河西,莫欺少年穷 学历代表你的过去,能力代表你的现在,学习代表你的将来 在探讨Startup启动类之前,我们先来了解下Asp.NET CORE 配置应用程序的执行顺序 ...

  9. 单点登录,系统B如何辨别用户已登录系统A

    首先系统A去访问受限资源,跳转到sso认证中心https://login.sso.com/login?redirectURL=https://www.a.com/center,用户登录成功之后,sso ...

  10. 201871010101-陈来弟《面向对象程序设计(java)》第十五周学习总结

                                                                                                         ...