最近,本人发现了一个新网站poj(不算新)

当然了,上面的资源很好......

就是还没搞清楚它的搜索该怎么弄,如果有大佬能教教我怎么弄,请在下方留言

闲话少说,回归我们的正题

题目转自poj 1061,题目传送门


题目大意:

给你一条线段(头尾相连),给出线段上两点的位置

在给你它们每次移动的距离,让你求出它们在同一个点停下的最短时间


解题思路:

很显然这道题是让你求ax+by=n这个不定方程(a,b已知)

首先,若ax+by=n有整数解,则gcd(a,b)能够整除n

在明确了上面一条之后,我们就要求出ax+by=gcd(a,b)的一组特解(x0,y0)。

那既然这样,我们就要用到数论上的知识了——拓展欧几里得算法

这道题需要用拓欧来解出一组特解

拓欧代码如下:

void exgcd(ll a,ll b,ll &x,ll &y)
{
if(b==)
{
x=,y=;
return ;
}
exgcd(b,a%b,x,y);
ll tmp=x;
x=y;
y=tmp-(a/b)*y;
}

然后我们把式子两边同时除以gcd(a,b)可得:

cx+dy=1(其中c=a/gcd(a,b);d=b/gcd(a,b),很明显c,d互质)

cx+dy=1的通解如下:

  x=x0+dt

  y=y0+ct  t为任意整数

所以,思路就很明了了:

1,拓欧算出特解

2,通过特解算出最小整数解

打个25min应该就应该出来了


AC代码如下:

#include<iostream>
#include<stdio.h>
#include<algorithm>
#define ll long long
using namespace std;
ll x,y,n,m,l;
ll a,b,c,d,ss_x,ss_y;
ll gcd(ll a,ll b)
{
if(b==) return a;
else gcd(b,a%b);
}
void exgcd(ll a,ll b,ll &x,ll &y)
{
if(b==)
{
x=,y=;
return ;
}
exgcd(b,a%b,x,y);
ll tmp=x;
x=y;
y=tmp-(a/b)*y;
}
void init()
{
a=b=c=d=ss_x=ss_y=;
}
int main()
{
while(scanf("%lld%lld%lld%lld%lld",&x,&y,&m,&n,&l)!=EOF)
{
init();
a=n-m;
b=l;
c=gcd(a,b);
d=x-y;
if(d%c!=) printf("Impossible\n");
else
{
a/=c;
b/=c;
d/=c;
exgcd(a,b,ss_x,ss_y);
ss_x*=d;
ss_x=(ss_x%b+b)%b;
printf("%lld\n",ss_x);
}
}
return ;
}

AC~


特别说明:

接下来,hdu上的题和poj上的题我会交替更新,所以请各位看官不要着急呀~

数论问题(1) : poj 1061的更多相关文章

  1. (Relax 数论1.6)POJ 1061 青蛙的约会(扩展的欧几里得公式)

    /* * POJ_1061.cpp * * Created on: 2013年11月19日 * Author: Administrator */ #include <iostream> # ...

  2. ACM: POJ 1061 青蛙的约会 -数论专题-扩展欧几里德

    POJ 1061 青蛙的约会 Time Limit:1000MS     Memory Limit:10000KB     64bit IO Format:%lld & %llu  Descr ...

  3. 扩展欧几里德 POJ 1061

    欧几里德的是来求最大公约数的,扩展欧几里德,基于欧几里德实现了一种扩展,是用来在已知a, b求解一组x,y使得ax+by = Gcd(a, b) =d(解一定存在,根据数论中的相关定理,证明是用裴蜀定 ...

  4. poj 1061 青蛙的约会 拓展欧几里得模板

    // poj 1061 青蛙的约会 拓展欧几里得模板 // 注意进行exgcd时,保证a,b是正数,最后的答案如果是负数,要加上一个膜 #include <cstdio> #include ...

  5. 数学#扩展欧几里德 POJ 1061&2115&2891

    寒假做的题了,先贴那时写的代码. POJ 1061 #include<iostream> #include<cstdio> typedef long long LL; usin ...

  6. POJ.1061 青蛙的约会 (拓展欧几里得)

    POJ.1061 青蛙的约会 (拓展欧几里得) 题意分析 我们设两只小青蛙每只都跳了X次,由于他们相遇,可以得出他们同余,则有: 代码总览 #include <iostream> #inc ...

  7. poj 1061 青蛙的约会 (扩展欧几里得模板)

    青蛙的约会 Time Limit:1000MS     Memory Limit:10000KB     64bit IO Format:%I64d & %I64u Submit Status ...

  8. AC日记——青蛙的约会 poj 1061

    青蛙的约会 POJ - 1061   思路: 扩展欧几里得: 设青蛙们要跳k步,我们可以得出式子 m*k+a≡n*k+b(mod l) 式子变形得到 m*k+a-n*k-b=t*l (m-n)*k-t ...

  9. POJ 1061 青蛙的约会(扩展GCD求模线性方程)

    题目地址:POJ 1061 扩展GCD好难懂.. 看了半天.最终把证明什么的都看明确了. .推荐一篇博客吧(戳这里),讲的真心不错.. 直接上代码: #include <iostream> ...

随机推荐

  1. C# 匿名回调方法在循环体中使用的注意事项

    今天在做AVG工具的选择分支功能时发现了一个问题,先把代码贴上来: private void SelectionParse(string value) { string[] ss = value.Sp ...

  2. RookeyFrame模块初始化

    上一篇讲了下线上创建模块,这一次讲下线下创建的模块如何初始化,实体类的创建可参考Demo中的客户主数据模块 首先讲下model类创建中的约定: 1.所有数据模型继承BaseEntity 2.需要绑定枚 ...

  3. C# 多线程处理List数据

    代码思路 将要处理的数据放到ConcurrentQueue中,然后开启多个线程去处理数据,处理完成后,再到队列中获取下一个待处理数据. ConcurrentQueue 表示线程安全的先进先出 (FIF ...

  4. .NET Core RabbitMQ探索(2)——RabbitMQ的Exchange

    实际上,RabbitMQ的生产者并不会直接把消息发送给队列,甚至生产者都不知道消息是否会被发送给一个队列.对于生产者而言,它们只能把消息发送到Exchange,一个Exchange所完成的工作相当简单 ...

  5. 工作笔记--adb命令篇

    1.抓log方法 (bat文件) mkdir D:\logcatset /p miaoshu=请描述操作:adb logcat -v threadtime > D:\logcat\%miaosh ...

  6. mac os catalina mongodb最新安装流程

    1.brew安装 不推荐用brew,因为现在mongodb闭源了,brew里已经搜索不到mongodb,不过还是可以用brew安装的,这篇就不写了. 2.官网下载 直接去官网下载一个zip,解压完放到 ...

  7. SpringMVC 之 上传文件

    一.需求: 利用SpringMVC实现上传文件的功能 二.思路: 1.我们可以在SpringMVC中,通过配置一个MultipartResolver来上传文件. 2.通过MultipartFile f ...

  8. 深入理解JVM虚拟机(一):JVM运行时数据区

    概述: JVM将内存的管理进行封装,使得开发人员不必关心内存申请.释放操作.但是在高级程序开发.复杂业务场景开发的时候,如果出现内存溢出的情况,对于开发人员而言就很难去分析出原因.所以还是很有必要去了 ...

  9. 在VideoFileClip函数中获取“OSError:[WinError 6]句柄无效”

    我正在使用python通过导入moviepy库创建一个程序,但收到以下错误: from moviepy.editor import VideoFileClip white_output = 'vide ...

  10. java查看进程:jps命令

    java查看进程:jps命令 jps(Java Virtual Machine Process Status Tool) 是JDK .5提供的一个显示当前所有java进程pid的命令,简单实用,非常适 ...