论文笔记系列-Auto-DeepLab:Hierarchical Neural Architecture Search for Semantic Image Segmentation
Pytorch实现代码:https://github.com/MenghaoGuo/AutoDeeplab
创新点
cell-level and network-level search
以往的NAS算法都侧重于搜索cell的结构,即当搜索得到一种cell结构后只是简单地将固定数量的cell按链式结构连接起来组成最终的网络模型。AutoDeeplab则将如何cell的连接方式也纳入了搜索空间中,进一步扩大了网络结构的范围。
dense image prediction
之前的大多数NAS算法都是基于image level的分类,例如DARTS,ENAS等都是在CIFAR10和ImageNet上做的实验,AutoDeeplab则是成功地将NAS应用到了目标检测和图像分割任务上。
算法
Cell level search space
cell level的结构搜索方式参考的是DARTS,细节可参阅论文笔记系列-DARTS: Differentiable Architecture Search。
搜索空间主要由如下8个operation组成:
- 3 × 3 max pooling
- 3 × 3 average pooling
- 3 × 3 atrous conv with rate 2
- 5 × 5 atrous conv with rate 2
- 3 × 3 depthwise-separable conv
- 5 × 5 depthwise-separable conv
- skip connection
- no connection (zero)
一个cell的示意图如下(为方便说明每个子节点之间只有三种operation,不同颜色的连线代表不同操作),0表示第一个子节点,它会接收前两层的cell的输出作为输入;
下面我们先以1-2为例看节点之间的计算方式:
1子节点表示为\(H^l_1\),1到2子节点之间的操作可以表示为:
\(\overline{O}_{1 \rightarrow 2}(H^l_1)=\sum_{k=1}^3\alpha^k_{1 \rightarrow 2} O^k(H^l_1)\)
其中\(\alpha^k\)表示第k个operation的概率,上图中一共有三种操作,所以最终的操作应该是三种操作的加权值,另外三个操作的和应该为1,所以通常需要使用softmax操作来实现。更一般化的表达方式如下:
\[
\begin{array}{l}{\qquad \overline{O}_{j \rightarrow i}\left(H_{j}^{l}\right)=\sum_{O^{k} \in \mathcal{O}} \alpha_{j \rightarrow i}^{k} O^{k}\left(H_{j}^{l}\right)} \\
{\text { where }} {\qquad \begin{aligned} \sum_{k=1}^{|\mathcal{O}|} \alpha_{j \rightarrow i}^{k}=1 & \,\,\,\, \forall i, j \\ \alpha_{j \rightarrow i}^{k} \geq 0 & \,\,\,\, \forall i, j, k \end{aligned}}\end{array}
\]
有了操作的表达式后,那么每个子节点的表达方式也就是对多个输入节点作加权求和,如下:
\[
H_{i}^{l}=\sum_{H_{j}^{l} \in \mathcal{I}_{i}^{l}} O_{j \rightarrow i}\left(H_{j}^{l}\right)
\]
Network-level search space
上图左边画的是network-level,横向表示layer,纵向表示图像分辨率(2表示原图是特征图的2倍,其他同理)。
灰色小圆圈表示固定的stem层,可以理解为固定的预处理层,即原图会首先经过一些列操作后得到缩小4倍的特征图,然后会在该特征图上进行模型结构搜索。
- 蓝色小圆圈表示候选节点,每个节点都可以是一个cell结构
灰色箭头表示每个cell节点数据可能的流动方向,可以看到一个节点最多可能有三种流动方向,即分辨率增大一倍,保持不变和减小一倍。这样做的目的是避免分辨率变化太大而导致信息量丢失过多。例如如果从4直接连接到32,这个画面太美不敢看,所以人为设定了前面的限制(虽然没有实验证明这样不可以,但是凭直觉这样貌似不可以,如果钱和设备像和谷歌一样多也还是可以试一试的)
右边刚开始看的时候还以为就只是介绍了cell结构,但是结合代码后发现有个地方稍微有些不同,这个其实在后面的论文中也有介绍,但是当时没注意看,即每个节点的表达式如下:
\[
\begin{aligned}^{s} H^{l}=& \beta_{\frac{\varepsilon}{2} \rightarrow s}^{l} \operatorname{Cell}\left(^{\frac{s}{2}} H^{l-1},^{s} H^{l-2} ; \alpha\right) \\ &+\beta_{s \rightarrow s}^{l} \operatorname{Cell}\left(^{s} H^{l-1},^{s} H^{l-2} ; \alpha\right) \\ &+\beta_{2 s \rightarrow s}^{l} \operatorname{Cell}\left(^{2 s} H^{l-1},^{s} H^{l-2} ; \alpha\right) \end{aligned}
\]
其中
\[
\begin{array}{ll}{\beta_{s \rightarrow \frac{s}{2}}^{l}+\beta_{s \rightarrow s}^{l}+\beta_{s \rightarrow 2 s}^{l}=1} & {\forall s, l} \\
{\beta_{s \rightarrow \frac{s}{2}}^{l} \geq 0 \quad \beta_{s \rightarrow s}^{l} \geq 0} & {\beta_{s \rightarrow 2 s}^{l} \geq 0 \quad \forall s, l}\end{array}
\]
上面的公式乍看会很懵,我们慢慢看:
- 首先\(\beta\)表示某条路径的概率,例如\(\beta^l_{s \rightarrow s}\)表示下图中的红色箭头路径的概率,其他同理。
- \(\text{Cell}(^{s} H^{l-1},^{s} H^{l-2}; \alpha)\)表示输入节点为下图中的两个红色节点,\(\alpha\)表示cell的内部结构
论文笔记系列-Auto-DeepLab:Hierarchical Neural Architecture Search for Semantic Image Segmentation的更多相关文章
- 论文笔记:Auto-DeepLab: Hierarchical Neural Architecture Search for Semantic Image Segmentation
Auto-DeepLab: Hierarchical Neural Architecture Search for Semantic Image Segmentation2019-03-18 14:4 ...
- 论文笔记之:Decoupled Deep Neural Network for Semi-supervised Semantic Segmentation
Decoupled Deep Neural Network for Semi-supervised Semantic Segmentation xx
- 论文笔记之:A CNN Cascade for Landmark Guided Semantic Part Segmentation
A CNN Cascade for Landmark Guided Semantic Part Segmentation ECCV 2016 摘要:本文提出了一种 CNN cascade (CNN ...
- 【论文笔记系列】AutoML:A Survey of State-of-the-art (上)
之前已经发过一篇文章来介绍我写的AutoML综述,最近把文章内容做了更新,所以这篇稍微细致地介绍一下.由于篇幅有限,下面介绍的方法中涉及到的细节感兴趣的可以移步到论文中查看. 论文地址:https:/ ...
- 论文笔记系列-Neural Architecture Search With Reinforcement Learning
摘要 神经网络在多个领域都取得了不错的成绩,但是神经网络的合理设计却是比较困难的.在本篇论文中,作者使用 递归网络去省城神经网络的模型描述,并且使用 增强学习训练RNN,以使得生成得到的模型在验证集上 ...
- 论文笔记系列-Simple And Efficient Architecture Search For Neural Networks
摘要 本文提出了一种新方法,可以基于简单的爬山过程自动搜索性能良好的CNN架构,该算法运算符应用网络态射,然后通过余弦退火进行短期优化运行. 令人惊讶的是,这种简单的方法产生了有竞争力的结果,尽管只需 ...
- 论文笔记系列-Neural Network Search :A Survey
论文笔记系列-Neural Network Search :A Survey 论文 笔记 NAS automl survey review reinforcement learning Bayesia ...
- 论文笔记:Fast Neural Architecture Search of Compact Semantic Segmentation Models via Auxiliary Cells
Fast Neural Architecture Search of Compact Semantic Segmentation Models via Auxiliary Cells 2019-04- ...
- 论文笔记:ProxylessNAS: Direct Neural Architecture Search on Target Task and Hardware
ProxylessNAS: Direct Neural Architecture Search on Target Task and Hardware 2019-03-19 16:13:18 Pape ...
随机推荐
- Spring Security教程之加点密,加点盐(七)
一.概述 一般用数据库保存用户的密码都是经过加密,甚少使用明文.同时,加密方式一般采用不可逆的加密方法,如MD5.也要避免相同的密码在加密后有相同的密文,如admin用户的密码为admin,加密后变成 ...
- 【技术博客】 Laravel 5.1单元测试(PHPUnit)入门
目录 Laravel 5.1单元测试(PHPUnit)入门 简介 安装与配置 1. 安装 2. 配置 编写测试样例 1. 新建测试样例 2. 编写函数的测试 3. 编写Web功能测试 运行测试与查看结 ...
- UE4命令行参数解析
转自:https://blog.csdn.net/u012999985/article/details/53544389 一 .命令行参数简述命令行参数是一连串的关键字字符串,当运行可执行文件时可以通 ...
- CentOS安装SonarQube7.9.1
1.准备 SonarQube版本:sonarqube-7.9.1.zip,官网地址:https://www.sonarqube.org/downloads/ jdk版本:jdk-11.0.4_linu ...
- Spring JDBC最佳实践(1)
原文地址:https://my.oschina.net/u/218421/blog/38513 Spring提供了两种使用JDBC API的最佳实践,一种是以JdbcTemplate为核心的基于Tem ...
- ubuntu 17.04 下搭建深度学习环境
.目前使用CPU即可,先不需要显卡配置 .使用pip3 安装深度学习框架 .要先安装pip3 #sudo apt install python3-pip https://blog.csdn.net/b ...
- LPAT: Learning to Predict Adaptive Threshold for Weakly-supervised Temporal Action Localization [Paper Reading]
Motivation: 阈值分割的阈值并没有通过模型训练学出来,而是凭借主观经验设置,本文通过与背景得分比较提取对应的proposal,不用阈值的另一篇文章是Shou Zheng的AutoLoc,通过 ...
- PHP 将字符串中的数字转化为数组
$str ='现在是2019年11月18日下午17点25分';$result='';$arr=[];for($i=0;$i<strlen($str);$i++){ if(is_numeric($ ...
- java解析复杂的json字符串
Java解析Json字符串--复杂对象(方法一) { "name": "三班", "students": [ { "age&q ...
- 『正睿OI 2019SC Day3』
容斥原理 容斥原理指的是一种排重,补漏的计算思想,形式化的来说,我们有如下公式: \[\left | \bigcup_{i=1}^nS_i \right |=\sum_{i}|S_i|-\sum_{i ...