Pytorch实现代码:https://github.com/MenghaoGuo/AutoDeeplab

创新点

cell-level and network-level search

以往的NAS算法都侧重于搜索cell的结构,即当搜索得到一种cell结构后只是简单地将固定数量的cell按链式结构连接起来组成最终的网络模型。AutoDeeplab则将如何cell的连接方式也纳入了搜索空间中,进一步扩大了网络结构的范围。

dense image prediction

之前的大多数NAS算法都是基于image level的分类,例如DARTS,ENAS等都是在CIFAR10和ImageNet上做的实验,AutoDeeplab则是成功地将NAS应用到了目标检测和图像分割任务上。

算法

Cell level search space

cell level的结构搜索方式参考的是DARTS,细节可参阅论文笔记系列-DARTS: Differentiable Architecture Search

搜索空间主要由如下8个operation组成:

  • 3 × 3 max pooling
  • 3 × 3 average pooling
  • 3 × 3 atrous conv with rate 2
  • 5 × 5 atrous conv with rate 2
  • 3 × 3 depthwise-separable conv
  • 5 × 5 depthwise-separable conv
  • skip connection
  • no connection (zero)

一个cell的示意图如下(为方便说明每个子节点之间只有三种operation,不同颜色的连线代表不同操作),0表示第一个子节点,它会接收前两层的cell的输出作为输入;

下面我们先以1-2为例看节点之间的计算方式:

1子节点表示为\(H^l_1\),1到2子节点之间的操作可以表示为:

\(\overline{O}_{1 \rightarrow 2}(H^l_1)=\sum_{k=1}^3\alpha^k_{1 \rightarrow 2} O^k(H^l_1)\)

其中\(\alpha^k\)表示第k个operation的概率,上图中一共有三种操作,所以最终的操作应该是三种操作的加权值,另外三个操作的和应该为1,所以通常需要使用softmax操作来实现。更一般化的表达方式如下:

\[
\begin{array}{l}{\qquad \overline{O}_{j \rightarrow i}\left(H_{j}^{l}\right)=\sum_{O^{k} \in \mathcal{O}} \alpha_{j \rightarrow i}^{k} O^{k}\left(H_{j}^{l}\right)} \\
{\text { where }} {\qquad \begin{aligned} \sum_{k=1}^{|\mathcal{O}|} \alpha_{j \rightarrow i}^{k}=1 & \,\,\,\, \forall i, j \\ \alpha_{j \rightarrow i}^{k} \geq 0 & \,\,\,\, \forall i, j, k \end{aligned}}\end{array}
\]

有了操作的表达式后,那么每个子节点的表达方式也就是对多个输入节点作加权求和,如下:

\[
H_{i}^{l}=\sum_{H_{j}^{l} \in \mathcal{I}_{i}^{l}} O_{j \rightarrow i}\left(H_{j}^{l}\right)
\]

Network-level search space

上图左边画的是network-level,横向表示layer,纵向表示图像分辨率(2表示原图是特征图的2倍,其他同理)。

  • 灰色小圆圈表示固定的stem层,可以理解为固定的预处理层,即原图会首先经过一些列操作后得到缩小4倍的特征图,然后会在该特征图上进行模型结构搜索。

  • 蓝色小圆圈表示候选节点,每个节点都可以是一个cell结构
  • 灰色箭头表示每个cell节点数据可能的流动方向,可以看到一个节点最多可能有三种流动方向,即分辨率增大一倍,保持不变和减小一倍。这样做的目的是避免分辨率变化太大而导致信息量丢失过多。例如如果从4直接连接到32,这个画面太美不敢看,所以人为设定了前面的限制(虽然没有实验证明这样不可以,但是凭直觉这样貌似不可以,如果钱和设备像和谷歌一样多也还是可以试一试的)

右边刚开始看的时候还以为就只是介绍了cell结构,但是结合代码后发现有个地方稍微有些不同,这个其实在后面的论文中也有介绍,但是当时没注意看,即每个节点的表达式如下:

\[
\begin{aligned}^{s} H^{l}=& \beta_{\frac{\varepsilon}{2} \rightarrow s}^{l} \operatorname{Cell}\left(^{\frac{s}{2}} H^{l-1},^{s} H^{l-2} ; \alpha\right) \\ &+\beta_{s \rightarrow s}^{l} \operatorname{Cell}\left(^{s} H^{l-1},^{s} H^{l-2} ; \alpha\right) \\ &+\beta_{2 s \rightarrow s}^{l} \operatorname{Cell}\left(^{2 s} H^{l-1},^{s} H^{l-2} ; \alpha\right) \end{aligned}
\]
其中
\[
\begin{array}{ll}{\beta_{s \rightarrow \frac{s}{2}}^{l}+\beta_{s \rightarrow s}^{l}+\beta_{s \rightarrow 2 s}^{l}=1} & {\forall s, l} \\
{\beta_{s \rightarrow \frac{s}{2}}^{l} \geq 0 \quad \beta_{s \rightarrow s}^{l} \geq 0} & {\beta_{s \rightarrow 2 s}^{l} \geq 0 \quad \forall s, l}\end{array}
\]

上面的公式乍看会很懵,我们慢慢看:

  • 首先\(\beta\)表示某条路径的概率,例如\(\beta^l_{s \rightarrow s}\)表示下图中的红色箭头路径的概率,其他同理。
  • \(\text{Cell}(^{s} H^{l-1},^{s} H^{l-2}; \alpha)\)表示输入节点为下图中的两个红色节点,\(\alpha\)表示cell的内部结构

MARSGGBO♥原创







2018-10-29

论文笔记系列-Auto-DeepLab:Hierarchical Neural Architecture Search for Semantic Image Segmentation的更多相关文章

  1. 论文笔记:Auto-DeepLab: Hierarchical Neural Architecture Search for Semantic Image Segmentation

    Auto-DeepLab: Hierarchical Neural Architecture Search for Semantic Image Segmentation2019-03-18 14:4 ...

  2. 论文笔记之:Decoupled Deep Neural Network for Semi-supervised Semantic Segmentation

    Decoupled Deep Neural Network for Semi-supervised Semantic Segmentation xx

  3. 论文笔记之:A CNN Cascade for Landmark Guided Semantic Part Segmentation

    A CNN Cascade for Landmark Guided Semantic Part Segmentation  ECCV 2016 摘要:本文提出了一种 CNN cascade (CNN ...

  4. 【论文笔记系列】AutoML:A Survey of State-of-the-art (上)

    之前已经发过一篇文章来介绍我写的AutoML综述,最近把文章内容做了更新,所以这篇稍微细致地介绍一下.由于篇幅有限,下面介绍的方法中涉及到的细节感兴趣的可以移步到论文中查看. 论文地址:https:/ ...

  5. 论文笔记系列-Neural Architecture Search With Reinforcement Learning

    摘要 神经网络在多个领域都取得了不错的成绩,但是神经网络的合理设计却是比较困难的.在本篇论文中,作者使用 递归网络去省城神经网络的模型描述,并且使用 增强学习训练RNN,以使得生成得到的模型在验证集上 ...

  6. 论文笔记系列-Simple And Efficient Architecture Search For Neural Networks

    摘要 本文提出了一种新方法,可以基于简单的爬山过程自动搜索性能良好的CNN架构,该算法运算符应用网络态射,然后通过余弦退火进行短期优化运行. 令人惊讶的是,这种简单的方法产生了有竞争力的结果,尽管只需 ...

  7. 论文笔记系列-Neural Network Search :A Survey

    论文笔记系列-Neural Network Search :A Survey 论文 笔记 NAS automl survey review reinforcement learning Bayesia ...

  8. 论文笔记:Fast Neural Architecture Search of Compact Semantic Segmentation Models via Auxiliary Cells

    Fast Neural Architecture Search of Compact Semantic Segmentation Models via Auxiliary Cells 2019-04- ...

  9. 论文笔记:ProxylessNAS: Direct Neural Architecture Search on Target Task and Hardware

    ProxylessNAS: Direct Neural Architecture Search on Target Task and Hardware 2019-03-19 16:13:18 Pape ...

随机推荐

  1. 【caffe编译】 fatal error: hdf5.h: 没有那个文件或目录

    src/caffe/layers/hdf5_output_layer.cpp:3:18: fatal error: hdf5.h: 没有那个文件或目录 查找文件 locate hdf5.h 修改Mak ...

  2. 【python学习案例】python判断自身是否正在运行

    需要引入psutil包: 实现思路: 1)用os.getpid()获取当前程序运行PID,将PID存入文件中 2)用psutil模块获取当前系统所有正在运行的pid 3)读取之前存入的PID,判断该P ...

  3. kubernetes 1.15 有哪些让人眼前一亮的新特性?

    原文链接:kubernetes 1.15 有哪些让人眼前一亮的新特性? 2019 年 6 月 20 日,Kubernetes 重磅发布了 1.15 版本,不过笔者忙到现在才有空认真来看一下到底更新了哪 ...

  4. docker compose项目

    本文参考: https://www.cnblogs.com/jmcui/p/9395375.html https://www.cnblogs.com/jmcui/p/9512795.html 1.Do ...

  5. 关于Svn服务总是链接异常

    之前一直在使用,本机电脑也没有修改网络环境却一直无法链接svn. 每次剪切代码都提示: ping服务ip可以ping通,域名却总是不通. 百度结果各种clear缓存,还不行 结果使用 在本地C:\Wi ...

  6. 笔记:Java Language Specification - 章节17- 线程和锁

    回答一个问题:多线程场景下,有时一个线程对shared variable的修改可能对另一个线程不可见.那么,何时一个线程对内存的修改才会对另一个线程可见呢? 基本的原则: 如果 读线程 和 写线程 不 ...

  7. Git教程-安装与创建版本库

    Git是一个分布式版本控制系统,他通过命令行使用的工具,Github是提供Git仓库托管服务的网站 安装参考: https://www.liaoxuefeng.com/wiki/89604348802 ...

  8. python 面向对象编程、获取对象信息

    面向对象与面向过程 参考链接:https://www.liaoxuefeng.com/wiki/0014316089557264a6b348958f449949df42a6d3a2e542c000/0 ...

  9. 2019 学而思java面试笔试题 (含面试题解析)

      本人5年开发经验.18年年底开始跑路找工作,在互联网寒冬下成功拿到阿里巴巴.今日头条.学而思等公司offer,岗位是Java后端开发,因为发展原因最终选择去了学而思,入职一年时间了,也成为了面试官 ...

  10. Matlab代理模式

    代理模式(Proxy)就是给一个对象提供一个代理对象,并有代理对象来控制对原有对象的引用.代理模式和装饰模式非常类似,但最主要的区别是代理模式中,代理类对被代理的对象有控制权,决定其执行或者不执行.本 ...