【LOJ4632】[PKUSC2018]真实排名

题面

终于有题面啦!!!

题目描述

小 C 是某知名比赛的组织者,该比赛一共有 \(n\) 名选手参加,每个选手的成绩是一个非负整数,定义一个选手的排名是:成绩不小于他的选手的数量(包括他自己)。例如如果 \(3\) 位选手的成绩分别是 \([1,2 ,2]\) ,那么他们的排名分别是 \([3,2,2]\) 。

拥有上帝视角的你知道所有选手的实力,所以在考试前就精准地估计了每个人的成绩,设你估计的第 \(i\) 个选手的成绩为\(A_i\)​,且由于你是上帝视角,所以如果不发生任何意外的话,你估计的成绩就是选手的最终成绩。

但是在比赛当天发生了不可抗的事故(例如遭受到了外星人的攻击),导致有一些选手的成绩变成了最终成绩的两倍,即便是有上帝视角的你也不知道具体是哪些选手的成绩翻倍了,唯一知道的信息是这样的选手恰好有 \(k\) 个。

现在你需要计算,经过了不可抗事故后,对于第 \(i\) 位选手,有多少种情况满足他的排名没有改变。

由于答案可能过大,所以你只需要输出答案对 \(998244353\) 取模的值即可。

输入格式

第一行两个正整数 \(n,k\)

第二行 \(n\) 个非负整数 \(A_1..A_n\)

输出格式

输出\(n\)行,第 \(i\) 行一个非负整数 \(ans_i\)​,表示经过不可抗事故后,第 \(i\) 位选手的排名没有发生改变的情况数。

样例

样例输入

3 2
1 2 3

输出

3
1
2

提示与说明

对于\(10\%\)的数据,有 \(1\leq n\leq 151\)

对于\(35\%\)的数据,有 \(1\leq n\leq 10^3\)

另有\(10\%\)的数据,满足每个人的成绩都互不相同

另有\(10\%\)的数据,满足\(A_i\leq 10^5\)

另有\(10\%\)的数据,满足\(k=85\),\(0\leq A_i\leq 6000\)

对于\(100\%\)的数据,有\(1\leq k < n\leq 10^5\),\(0\leq A_i\leq 10^9\)

题解

其实还是挺容易的qaq,只不过细节比较多

分别考虑你现在计算的那个位置选不选

如果不选,可以选比它大的或小于它\(\frac 12\)的。

那么假如我们钦定它选,则必须动\([a_i,2a_i]\)的,

计算一下有多少,其余的随便选就行了。

每一种情况都预处理阶乘用组合数就好啦

代码

#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cmath>
#include <algorithm>
using namespace std;
inline int gi() {
register int data = 0, w = 1;
register char ch = 0;
while (!isdigit(ch) && ch != '-') ch = getchar();
if (ch == '-') w = -1, ch = getchar();
while (isdigit(ch)) data = 10 * data + ch - '0', ch = getchar();
return w * data;
}
const int Mod = 998244353;
const int MAX_N = 1e5 + 5;
int fpow(int x, int y) {
int res = 1;
while (y) {
if (y & 1) res = 1ll * res * x % Mod;
y >>= 1;
x = 1ll * x * x % Mod;
}
return res;
}
int N, K, A[MAX_N], fac[MAX_N << 1], inv[MAX_N << 1];
int C(int n, int m) {
if (m > n || m < 0) return 0;
return 1ll * fac[n] * inv[m] % Mod * inv[n - m] % Mod;
}
int X1[MAX_N], X2[MAX_N], ans[MAX_N]; int main () {
N = gi(), K = gi();
fac[0] = 1; for (int i = 1; i <= 2 * N; i++) fac[i] = 1ll * fac[i - 1] * i % Mod;
inv[2 * N] = fpow(fac[2 * N], Mod - 2); for (int i = 2 * N - 1; ~i; i--) inv[i] = 1ll * inv[i + 1] * (i + 1) % Mod;
for (int i = 1; i <= N; i++) A[i] = gi(), X1[i] = A[i], X2[i] = A[i] << 1;
sort(&X1[1], &X1[N + 1]);
sort(&X2[1], &X2[N + 1]);
for (int i = 1; i <= N; i++) {
if (A[i] == 0) { ans[i] = C(N, K); continue; }
int x = N - 1 - (lower_bound(&X2[1], &X2[N + 1], A[i]) - X2 - 1) - (N - (lower_bound(&X1[1], &X1[N + 1], A[i]) - X1));
int y = (N - (lower_bound(&X1[1], &X1[N + 1], A[i]) - X1) + 1) - 1 - (N - (lower_bound(&X1[1], &X1[N + 1], A[i]) - X1));
ans[i] = C(x, y) * C(N - 1 - x, K - y) % Mod;
}
for (int i = 1; i <= N; i++) {
if (A[i] == 0) continue;
int x = N - 1 - (lower_bound(&X2[1], &X2[N + 1], A[i] << 1) - X2 - 1) - (N - (lower_bound(&X1[1], &X1[N + 1], A[i] << 1) - X1) + 1);
int y = N - (lower_bound(&X1[1], &X1[N + 1], A[i]) - X1) - (N - (lower_bound(&X1[1], &X1[N + 1], A[i] << 1) - X1) + 1);
ans[i] = (ans[i] + C(x, y) * C(N - 1 - x, K - y - 1) % Mod) % Mod;
}
for (int i = 1; i <= N; i++) printf("%d\n", ans[i]);
return 0;
}

【LOJ4632】[PKUSC2018]真实排名的更多相关文章

  1. [PKUSC2018]真实排名

    [PKUSC2018]真实排名 题目大意: 有\(n(n\le10^5)\)个人,每个人有一个成绩\(A_i(0\le A_i\le10^9)\).定义一个人的排名为\(n\)个人中成绩不小于他的总人 ...

  2. BZOJ_5368_[Pkusc2018]真实排名_组合数

    BZOJ_5368_[Pkusc2018]真实排名_组合数 Description 小C是某知名比赛的组织者,该比赛一共有n名选手参加,每个选手的成绩是一个非负整数,定义一个选手的排名是:成绩不小于他 ...

  3. [PKUSC2018]真实排名——线段树+组合数

    题目链接: [PKUSC2018]真实排名 对于每个数$val$分两种情况讨论: 1.当$val$不翻倍时,那么可以翻倍的是权值比$\frac{val-1}{2}$小的和大于等于$val$的. 2.当 ...

  4. BZOJ5368:[PKUSC2018]真实排名(组合数学)

    Description 小C是某知名比赛的组织者,该比赛一共有n名选手参加,每个选手的成绩是一个非负整数,定义一个选手的排名是:成绩不小于他的选手的数量(包括他自己). 例如如果333位选手的成绩分别 ...

  5. bzoj 5368: [Pkusc2018]真实排名

    Description 小C是某知名比赛的组织者,该比赛一共有n名选手参加,每个选手的成绩是一个非负整数,定义一个选手的排名是 :成绩不小于他的选手的数量(包括他自己).例如如果3位选手的成绩分别是[ ...

  6. bzoj5368 [Pkusc2018]真实排名

    题目描述: bz luogu 题解: 组合数计数问题. 首先注意排名指的是成绩不小于他的选手的数量(包括他自己). 考虑怎么增大才能改变排名. 小学生都知道,对于成绩为$x$的人,让他自己不动并让$\ ...

  7. 【洛谷5368】[PKUSC2018] 真实排名(组合数学)

    点此看题面 大致题意: 有\(n\)个数字,定义一个数的排名为不小于它的数的个数.现要随机将其中\(k\)个数乘\(2\),求对于每个数有多少种方案使其排名不变. 分类讨论 对于这种题目,我们可以分类 ...

  8. Luogu P5368 [PKUSC2018]真实排名

    老年选手只会做SB题了(还调了好久) 很容易想到分类讨论,按第\(i\)个人有没有翻倍来算 若\(a_i\)未翻倍,显然此时将\([0,\lceil \frac{a_i}{2}\rceil)\)的数和 ...

  9. LOJ6432 [PKUSC2018] 真实排名 【组合数】

    题目分析: 做三个指针然后预处理阶乘就行. 题目代码: #include<bits/stdc++.h> using namespace std; ; ; int n,k; struct n ...

随机推荐

  1. python的*args和**kwargs基础用法

    *args表示任何多个无名参数,它是一个tuple **kwargs:传入的字典,就如:a=1,传入键值,默认就传入到**kwargs中,如下面代码: class FOO: def __init__( ...

  2. java反序列化Commons-Collections5分析

    BadAttributeValueException package org.lain.poc; import org.apache.commons.collections.Transformer; ...

  3. 9、RabbitMQ-集成Spring

    spring封装RabbitMQ看官网:https://spring.io/projects/spring-amqp#learn 开发时根据官网的介绍进行开发,具体的说明都有具体的声明 1.导入依赖 ...

  4. 25、springboot与缓存整合Redis

    默认使用ConcurrentMapCacheManager 将数据保存在下面的Map中 docker: 安装Redis: 查看官方文档: 添加约束 <dependency> <gro ...

  5. java project如何连接数据库

    1,首先从mysql的官网上下载mysql-connector-java-5.1.44.zip 2,选择downloads下的community 3,在Community下选择MySql Connec ...

  6. 【luogu P1373 小a和uim之大逃离】 题解

    题目链接:https://www.luogu.org/problemnew/show/P1373 想不出来状态 看了一眼题解状态明白了 dp[i][j][h][1/0] 表示在i,j点差值为h是小A还 ...

  7. Reading SketchVisor Robust Network Measurement for Sofeware Packet Processing

    SIGCOMM17 摘要 在现有的网络测量任务中包括流量监测.数据收集和一系列网络攻击的预防.现有的基于sketch的测量算法存在严重性能损失.大量计算开销以及测量的精确性不足,而基于硬件的优化方法并 ...

  8. CentOS查看卸载openjdk

    1.查看openjdk版本 java -versionjava version "1.7.0_51" OpenJDK Runtime Environment (rhel-2.4.5 ...

  9. Oracle 日志挖掘(LogMiner)使用

    Logminer依赖于2个包:DBMS_LOGMNR和DBMS_LOGMNR_D,Oracle 11g默认已安装 Logminer 基本使用步骤 <1>. Specify a LogMin ...

  10. css模型框

    在 CSS 中,width 和 height 指的是内容区域的宽度和高度.增加内边距.边框和外边距不会影响内容区域的尺寸,但是会增加元素框的总尺寸. 假设框的每个边上有 10 个像素的外边距和 5 个 ...