【刷题】BZOJ 2599 [IOI2011]Race
Description
给一棵树,每条边有权.求一条简单路径,权值和等于K,且边的数量最小.N <= 200000, K <= 1000000
Input
第一行 两个整数 n, k
第二..n行 每行三个整数 表示一条无向边的两端和权值 (注意点的编号从0开始)
Output
一个整数 表示最小边数量 如果不存在这样的路径 输出-1
Sample Input
4 3
0 1 1
1 2 2
1 3 4
Sample Output
2
Solution
点分治
考虑如何计算答案,有一个节点,我们依次遍历它的所有儿子,遍历到一个儿子时,求的是它与前面已经遍历过的子树一起的答案(即点对中有一点在当前遍历到的子树之中,另一点在以前已经遍历完的子树之中),这样保证了不需要去重,也保证了正确性
开一个桶,\(Mf[i]\)表示距离当前根 \(i\) 长度的最短深度是多少,每次更新答案就是 \(dep[x]+Mf[dis[x]-dep[x]]\)
在点分树中用memset会很慢,于是每次求完当前根的答案之后,用之前算答案的函数把 \(Mf\) 数组更新回去(实际上就是memset的效果),然后再下一步点分
BZOJ上有边权等于0的,所以每次进solve的时候都要把 \(Mf[0]\) 赋为0
#include<bits/stdc++.h>
#define ui unsigned int
#define ll long long
#define db double
#define ld long double
#define ull unsigned long long
const int MAXN=200000+10,MAXK=1000000+10,inf=0x3f3f3f3f;
int Mf[MAXK],dep[MAXN],dis[MAXN],n,k,e,to[MAXN<<1],nex[MAXN<<1],beg[MAXN],w[MAXN<<1],size[MAXN],Mx[MAXN],root,ans=inf,finish[MAXN];
template<typename T> inline void read(T &x)
{
T data=0,w=1;
char ch=0;
while(ch!='-'&&(ch<'0'||ch>'9'))ch=getchar();
if(ch=='-')w=-1,ch=getchar();
while(ch>='0'&&ch<='9')data=((T)data<<3)+((T)data<<1)+(ch^'0'),ch=getchar();
x=data*w;
}
template<typename T> inline void write(T x,char ch='\0')
{
if(x<0)putchar('-'),x=-x;
if(x>9)write(x/10);
putchar(x%10+'0');
if(ch!='\0')putchar(ch);
}
template<typename T> inline void chkmin(T &x,T y){x=(y<x?y:x);}
template<typename T> inline void chkmax(T &x,T y){x=(y>x?y:x);}
template<typename T> inline T min(T x,T y){return x<y?x:y;}
template<typename T> inline T max(T x,T y){return x>y?x:y;}
inline void insert(int x,int y,int z)
{
to[++e]=y;
nex[e]=beg[x];
beg[x]=e;
w[e]=z;
}
inline void getroot(int x,int f,int ntotal)
{
Mx[x]=0;size[x]=1;
for(register int i=beg[x];i;i=nex[i])
if(to[i]==f||finish[to[i]])continue;
else
{
getroot(to[i],x,ntotal);
size[x]+=size[to[i]];
chkmax(Mx[x],size[to[i]]);
}
chkmax(Mx[x],ntotal-size[x]);
if(Mx[x]<Mx[root])root=x;
}
inline void cal(int x,int f)
{
dep[x]=dep[f]+1;
if(dis[x]<=k)chkmin(ans,dep[x]+Mf[k-dis[x]]);
for(register int i=beg[x];i;i=nex[i])
if(to[i]==f||finish[to[i]])continue;
else dis[to[i]]=dis[x]+w[i],cal(to[i],x);
}
inline void add(int x,int f,int v)
{
if(dis[x]<=k)
{
if(v)chkmin(Mf[dis[x]],dep[x]);
else Mf[dis[x]]=inf;
}
for(register int i=beg[x];i;i=nex[i])
if(to[i]==f||finish[to[i]])continue;
else add(to[i],x,v);
}
inline void solve(int x)
{
finish[x]=1;dep[x]=0;Mf[0]=0;
for(register int i=beg[x];i;i=nex[i])
if(!finish[to[i]])
{
dis[to[i]]=w[i];
cal(to[i],x);
add(to[i],x,1);
}
for(register int i=beg[x];i;i=nex[i])
if(!finish[to[i]])add(to[i],x,0);
for(register int i=beg[x];i;i=nex[i])
if(!finish[to[i]])
{
root=0;
getroot(to[i],x,size[to[i]]);
solve(root);
}
}
int main()
{
read(n);read(k);
for(register int i=1;i<n;++i)
{
int u,v,w;
read(u);read(v);read(w);
u++;v++;
insert(u,v,w);insert(v,u,w);
}
Mx[root=0]=inf;
getroot(1,0,n);
for(register int i=0;i<=k;++i)Mf[i]=inf;
solve(root);
write(ans==inf?-1:ans,'\n');
return 0;
}
【刷题】BZOJ 2599 [IOI2011]Race的更多相关文章
- BZOJ 2599: [IOI2011]Race( 点分治 )
数据范围是N:20w, K100w. 点分治, 我们只需考虑经过当前树根的方案. K最大只有100w, 直接开个数组CNT[x]表示与当前树根距离为x的最少边数, 然后就可以对根的子树依次dfs并更新 ...
- bzoj 2599 [IOI2011]Race 点分
[IOI2011]Race Time Limit: 70 Sec Memory Limit: 128 MBSubmit: 4768 Solved: 1393[Submit][Status][Dis ...
- bzoj 2599: [IOI2011]Race (点分治 本地过了就是过了.jpg)
题面:(复制别人的...) Description 给一棵树,每条边有权.求一条路径,权值和等于K,且边的数量最小. Input 第一行 两个整数 n, k第二..n行 每行三个整数 表示一条无向边的 ...
- bzoj 2599 [IOI2011]Race (点分治)
[题意] 问树中长为k的路径中包含边数最少的路径所包含的边数. [思路] 统计经过根的路径.假设当前枚举到根的第S个子树,若x属于S子树,则有: ans<-dep[x]+min{ dep[y] ...
- BZOJ 2599 [IOI2011]Race【Tree,点分治】
给出N(1 <= N <= 200000)个结点的树,求长度等于K(1 <= K <= 1000000)的路径的最小边数. 点分治,这道题目和POJ 2114很接近,2114是 ...
- BZOJ 2599: [IOI2011]Race
点分治,定权值,求另一关键字最小 不满足前缀加减性 可以按序遍历,用一数组$t[] 来维护路径为i的最小边数$ 再对于一个直系儿子对应的子树,先算距离求答案再更新$t数组,这样就不会重复$ #incl ...
- bzoj 2599: [IOI2011]Race【点分治】
点分治,用一个mn[v]数组记录当前root下长为v的链的最小深度,每次新加一个儿子的时候都在原来儿子更新过的mn数组里更新ans(也就是查一下mn[m-dis[p]]+de[p]) 这里注意更新和初 ...
- 2599: [IOI2011]Race
2599: [IOI2011]Race 链接 分析 被memset卡... 点分治,对于重心,遍历子树,记录一个数组T[i],表示以重心为起点的长度为i的路径中最少的边数是多少.然后先遍历子树,更新答 ...
- 【BZOJ】2599: [IOI2011]Race 点分治
[题意]给一棵树,每条边有权.求一条简单路径,权值和等于K,且边的数量最小.N <= 200000, K <= 1000000.注意点从0开始编号,无解输出-1. [算法]点分治 [题解] ...
随机推荐
- Redis可视化客户端管理Web UI工具收集
https://github.com/uglide/RedisDesktopManager(推荐,全平台支持的桌面UI工具) Web方案: https://github.com/ErikDubbelb ...
- Java+Selenium 3.x 实现Web自动化 - Maven打包TestNG,利用jenkins执行测试
1. Jenkins本地执行测试 or 服务器端执行测试 测试代码计划通过jenkins执行时,通过网上查询各种教程,大多数为本地执行测试,由此可见,本地执行是大多数人的选择. 经过探讨,最终决定采用 ...
- 存储过程关于LOOP循环问题
本随笔文章,由个人博客(鸟不拉屎)转移至博客园 发布时间: 2018 年 10 月 17 日 原地址:https://niaobulashi.com/archives/procedures_loop. ...
- Linux文件归档和解压缩
1.tar tar命令相当于归档,不做压缩,解压同样也是把归档文件释放出来(归档通俗上可以理解为把文件分类,把一些文件放到一个包中归类,方便用户管理) 解包:tar -zxvf file.tar #解 ...
- UTF-8编码下'\u7528\u6237'转换为中文汉字'用户'
UTF-8编码下'\u7528\u6237'转换为中文'用户' 一.前言 有过多次,在开发项目中遇见设置文件编码格式为UTF-8,但是打开该文件出现类似\u7528这样的数据,看也看不懂,也不是平常见 ...
- Java飞机大战MVC版
PlaneWar Java飞机大战MVC版 //无聊时偷的雷霆战机素材写了一个飞机大战,本意是练习mvc,但写得还是不清晰 github下载:https://github.com/dejavudwh/ ...
- 各web服务器的特点和优势
1.Tomcat 和 Jetty 面向java语言 天生就是重量级的web服务器.性能一般 2.IIS 只能在windows平台运行,windows作为服务器在稳定性与其他一些性能上不如类unix操作 ...
- Zabbix部署-LNMP环境
原文发表于cu:2016-05-05 参考文档: LNMP安装:http://www.osyunwei.com/archives/7891.html 一.环境 Server:CentOS-7-x86_ ...
- PIGCMS 关闭聊天机器人(小黄鸡)
无脑操作举例 1.找到 WeixinAction.class.php 文件,路径: 你的版本\PigCms\Lib\Action\Home 2.查询 function chat ,在 chat() 函 ...
- 我是IT小小鸟读书笔记
阅读了我是IT小小鸟后发现,自己开发程序是真的很苦难的,在现在这个空对空的时期,我们学习到大部分的全都是理论知识,而没有真正的去进行实践.没有经过实践,我们在程序开发过程中也就无法发现自身的困难. 在 ...