BZOJ 1367 [Baltic2004]sequence

Description

给定一个序列\(t_1,t_2,\dots,t_N\),求一个递增序列\(z_1<z_2<\dots<z_N\),使得\(R=|t_1-z_1|+|t_2-z_2|+\dots+|t_N-z_N|\)的值最小,本题中,我们只需求出这个最小的\(R\)值

Input

第\(1\)行为\(N(1\le N\le10^6)\)

第\(2\)行到第\(N+1\)行,每行一个整数。第\(K+1\)行为\(t_k(0\le t_k \le 2\times 10^9)\)


思路:

如果我们需要求一个非递减的\(z\)

考虑特殊情况

注意到对一个递增的序列,有\(z_i=t_i\)

对一个递减的序列,有\(z_i\)为\(t_i\)的中位数

所以猜测可以找到一种区间的划分,使每一段区间的\(z_i\)都是这段区间\(t_i\)的中位数

感性理解一下感觉是对的。

实现起来需要动态维护末尾的区间的中位数,我们每次新进一个元素的时候,自己成一个区间,然后比一下和末尾的区间的中位数,比\(\text{Ta}\)小就合并了。注意到可以用堆维护中位数,然后合并就可并堆了。

最后一点,上面的情况都是针对非递减的情况,改成递增也很简单,把\(t_i=t_i-i\)就行了,感性理解一下似乎挺容易的。


Code:

#include <cstdio>
#include <cmath>
#include <algorithm>
#define ll long long
const int N=1e6+10;
int n,m,dis[N],key[N],rig[N],root[N],siz[N],ch[N][2];
#define ls ch[x][0]
#define rs ch[x][1]
int Merge(int x,int y)
{
if(!x||!y) return x+y;
if(key[x]<key[y]) std::swap(x,y);
rs=Merge(rs,y);
if(dis[ls]<dis[rs]) std::swap(ls,rs);
dis[x]=dis[rs]+1;
siz[x]=siz[ls]+siz[rs]+1;
return x;
}
void maintain()
{
int x;
while(rig[m]-rig[m-1]+1>>1<siz[x=root[m]])
root[m]=Merge(ls,rs);
}
int main()
{
scanf("%d",&n);
for(int i=1;i<=n;i++)
{
scanf("%d",key+i),key[i]-=i;
++m,rig[m]=root[m]=i,siz[i]=1;
while(key[root[m-1]]>key[root[m]])
root[m-1]=Merge(root[m-1],root[m]),rig[m-1]=rig[m],--m,maintain();
}
ll ans=0;
for(int i=1;i<=m;i++)
for(int j=rig[i-1]+1;j<=rig[i];j++)
ans=ans+abs(key[j]-key[root[i]]);
printf("%lld\n",ans);
return 0;
}

2018.12.10

BZOJ 1367 [Baltic2004]sequence 解题报告的更多相关文章

  1. BZOJ 1367: [Baltic2004]sequence [可并堆 中位数]

    1367: [Baltic2004]sequence Time Limit: 20 Sec  Memory Limit: 64 MBSubmit: 1111  Solved: 439[Submit][ ...

  2. bzoj 1367: [Baltic2004]sequence

    1367: [Baltic2004]sequence Time Limit: 20 Sec  Memory Limit: 64 MB Description Input Output 一个整数R Sa ...

  3. BZOJ 1367 [Baltic2004]sequence (可并堆)

    题面:BZOJ传送门 题目大意:给你一个序列$a$,让你构造一个递增序列$b$,使得$\sum |a_{i}-b_{i}|$最小,$a_{i},b_{i}$均为整数 神仙题.. 我们先考虑b不递减的情 ...

  4. 【BZOJ 1367】 1367: [Baltic2004]sequence (可并堆-左偏树)

    1367: [Baltic2004]sequence Description Input Output 一个整数R Sample Input 7 9 4 8 20 14 15 18 Sample Ou ...

  5. BZOJ 1367([Baltic2004]sequence-左偏树+中位数贪心)

    1367: [Baltic2004]sequence Time Limit: 20 Sec   Memory Limit: 64 MB Submit: 521   Solved: 159 [ Subm ...

  6. 1367: [Baltic2004]sequence

    1367: [Baltic2004]sequence Time Limit: 20 Sec  Memory Limit: 64 MB Submit: 1090  Solved: 432 [Submit ...

  7. USACO Section2.1 Sorting a Three-Valued Sequence 解题报告

    sort3解题报告 —— icedream61 博客园(转载请注明出处)---------------------------------------------------------------- ...

  8. 【BZOJ】1367: [Baltic2004]sequence

    题意 给\(n(n \le 10^6)\)个数的序列\(a\),求一个递增序列\(b\)使得\(\sum_{i=1}^{n} |a_i-b_i|\)最小. 分析 神题啊不会. 具体证明看黄源河论文&l ...

  9. timus 1175. Strange Sequence 解题报告

    1.题目描述: 1175. Strange Sequence Time limit: 1.0 secondMemory limit: 2 MB You have been asked to disco ...

随机推荐

  1. sqlite两表更新update

    1 2 3 4 5 6 7 8 9 10 11 12 UPDATE t1 SET Column1 =   ( SELECT Columnx    FROM t2    WHERE t2. KEY = ...

  2. appium+python自动化☞环境搭建

    前言:appium可以说是做app最火的一个自动化框架,它的主要优势是支持android和ios,另外脚本语言也是支持java和Python.略懂Python,所以接下来的教程是 appium+pyt ...

  3. JMeter自学笔记1-环境安装

    一.写在前面的话: Jmeter是一款优秀的开源测试工具, 是每位测试工程师进阶过程中,需要熟悉并掌握的一款测试工具,熟练使用Jmeter能大大提高工作效率. Jmeter环境安装需要依赖JDK,所以 ...

  4. appium自动化环境搭建

    1.java开发环境JDK 2.android SDK(platform/platform tools/tools/build tools) 3.python下载安装(pip) 4.appium下载安 ...

  5. Python教程 深入条件控制

    while 和 if 条件句中可以使用任意操作,而不仅仅是比较操作. 比较操作符 in 和 not in 校验一个值是否在(或不在)一个序列里.操作符 is 和 is not 比较两个对象是不是同一个 ...

  6. spring-boot Jpa配置

    spring.jpa.hibernate.ddl-auto ddl-auto:create----每次运行该程序,没有表格会新建表格,表内有数据会清空 ddl-auto:create-drop---- ...

  7. centos 系统初始化

    centos 系统初始化 #!/bin/bash # author cfwl create date of 2012-10-21 # blog http://cfwlxf.blog.51cto.com ...

  8. java运行时内存分类

    主要有java栈(虚拟机栈), 堆 ,方法区. 线程私有: 栈: 每个方法执行的时候 都会同时创建一个栈桢 Stack Frame 用于存储  局部变量表, 操作数栈,动态链接, 方法出口等信息 线程 ...

  9. 20181016-4 Alpha阶段第1周/共2周 Scrum立会报告+燃尽图 02

    此次作业要求参见 [https://edu.cnblogs.com/campus/nenu/2018fall/homework/2247] Scrum master:祁玉 一.小组介绍 组长:王一可 ...

  10. 《Linux内核与分析》第八周

    by 20135130王川东 一.进程切换关键代码switch-to分析     1.进程调度与进程调度时机分析 1)不同类型的进程有不同的调度要求 分类:I/0-bound:频繁的进行I/o 通常会 ...