[题解] [NOIP2008] 双栈排序——关系的冲突至图论解法
Problem
题目描述
Tom最近在研究一个有趣的排序问题。如图所示,通过2个栈S1和S2,Tom希望借助以下4种操作实现将输入序列升序排序。
操作a
如果输入序列不为空,将第一个元素压入栈S1
操作b
如果栈S1不为空,将S1栈顶元素弹出至输出序列
操作c
如果输入序列不为空,将第一个元素压入栈S2
操作d
如果栈S2不为空,将S2栈顶元素弹出至输出序列
如果一个1~n的排列P可以通过一系列操作使得输出序列为1,2,…,(n-1),n,Tom就称P是一个“可双栈排序排列”。例如(1,3,2,4)就是一个“可双栈排序序列”,而(2,3,4,1)不是。下图描述了一个将(1,3,2,4)排序的操作序列:<a,c,c,b,a,d,d,b>
当然,这样的操作序列有可能有几个,对于上例(1,3,2,4),<a,c,c,b,a,d,d,b>是另外一个可行的操作序列。Tom希望知道其中字典序最小的操作序列是什么。
Solution
这题我一开始想的是贪心。但后来发现a和c的入栈顺序有误可能会导致无解。
然后我看了一下标签——“图论”?嗯???
我看了几个题解。二分图。i与j不能放在一起。贪心。
然后我再试着打了打代码,A了,证明我的思路是正确的。感谢那些题解提供的帮助,虽然我没有完全看懂。
这是一道很巧妙的题目,用了一个我认为很重要的思想。
思路零(最开始的思路)
经过了一些考虑的贪心。
第一,我们如果入这个栈的数是目前排序到的最大的数+1,那么这个栈我们是不是不能再入栈?这是显然的,在这个栈的下一次进栈前,我们应当将这个元素出栈。
第二,否则能入栈则入栈,尽量入a栈。
第三,栈顶的元素必须比入栈的元素要大,正确性显然。
考虑执行顺序b->a->d->c。检查到这种操作能执行则执行。显然这种执行顺序在贪心的求字典序最小上是正确的。
然后这个贪心当然是错误的啦
思路一(来自某题解)
我们先考虑一个栈能不能排。如果一个栈能排的话我们还会用两个栈吗?按照贪心原则,这么做肯定是不行的。
那么问题来了——什么时候我们得必须用两个栈才能排?
引理(来自同样的题解和另一个题解)
在排列P中。若P[k]<P[i]<P[j],i<j<k,则i和j不能在同一个栈中。正确性不是很显然,感性理解也是可以的。证明可以去网上找其它的题解。想要理解的话不如自己拿个例子试试,比如(2,3,1)。
思路二(来自某题解)
这道题到底跟图论有什么关系?最大的关系在于“双”这个字。
二分图可以用来表示关系的冲突。比如两个相邻的点不能染成同样的颜色,又或是两个数不能放进同一个栈中。知道了这个关系,我们可以知道两个数应该放在什么栈里,知道到底存不存在方案使得排序完成。
我们将这道题转换成二分图进行处理。
枚举\(i<j<n\),若j+1~n中存在k使得\(P[k]<P[i]<P[j]\),则i和j连一条边,代表他们不能入同一个栈。
显然若i与j没有连边,就代表他们按顺序排始终可以出现在同一个栈中。
这个过程可以用一个后缀求最小值来\(O(n^{2})\)地求得。
改进后的贪心思路(建立在求得的二分图的基础上)
显然我们现在将图染成了两种颜色。若颜色不同则代表它得入不同的栈。
那么我们考虑一下,顺序是ABC,A是0,B是1,C是0。那么AC肯定入a栈,B入c栈对不对?因为A是最先的。在操作顺序aca和cac中,我们选择前一个操作更好。所以我们可以得到颜色与第一个数同色的点入a栈,其余入c栈。
在入栈的基础上,我们再使用上方的贪心模拟,按照b->a->d->c的操作顺序考虑。显然这种顺序是最优的。并且根据得到的二分图入栈,可以保证顺序是正确的。保证顺序正确得到可行解的同时字典序最小,那么就是题目要求得的解。
何为无解的情况?就是无法构造二分图的情况。即A-B B-C C-A的情况(A-B:A不能和B放在一起)。
个人觉得这题是道很好的拓宽思路的题目2333
Code
#include<bits/stdc++.h>
using namespace std;
const int N=1010,M=200010;
int P[N];
int h[N],to[M],nexp[M],p=1;
inline void ins(int a,int b){
nexp[p]=h[a],h[a]=p,to[p]=b,p++;
}
int sm[N];
int color[N];
bool imp;
void dfs(int x,int c){
color[x]=c;
for(int u=h[x];!imp && u;u=nexp[u]){
if(color[to[u]]==-1) dfs(to[u],c^1);
else if(color[x]==color[to[u]]) imp=true;
}
}
int s1[N],t1=1;
int s2[N],t2=1;
int now;
int main(){
ios::sync_with_stdio(false);
int n;
cin>>n;
for(int i=1;i<=n;i++) cin>>P[i];
sm[n]=P[n];
for(int i=n-1;i>=1;i--) sm[i]=min(sm[i+1],P[i]); // 后缀最小值
for(int i=1;i<=n;i++)
for(int j=i+1;j<n;j++)
if(sm[j+1]<P[i]&&P[i]<P[j]) ins(i,j),ins(j,i); // 建图
memset(color,-1,sizeof(color));
for(int i=1;i<=n;i++){
if(color[i]==-1) dfs(i,0); // 进行染色
if(imp) printf("0\n"),exit(0); // 无解则退出
}
int i=1;
now=1;
while(now<=n){
if(s1[t1-1]==now)t1--,now++,printf("b ");
else if(color[i]==0)s1[t1++]=P[i++],printf("a ");
else if(s2[t2-1]==now)t2--,now++,printf("d ");
else if(color[i]==1)s2[t2++]=P[i++],printf("c ");
} // 进行贪心的模拟
return 0;
}
[题解] [NOIP2008] 双栈排序——关系的冲突至图论解法的更多相关文章
- Luogu1155 NOIP2008 双栈排序 【二分图染色】【模拟】
Luogu1155 NOIP2008 双栈排序 题目描述 Tom最近在研究一个有趣的排序问题.如图所示,通过 2个栈 S1 和 S2 ,Tom希望借助以下 44 种操作实现将输入序列升序排序. 操作 ...
- [NOIP2008]双栈排序 【二分图 + 模拟】
题目描述 Tom最近在研究一个有趣的排序问题.如图所示,通过2个栈S1和S2,Tom希望借助以下4种操作实现将输入序列升序排序. 操作a 如果输入序列不为空,将第一个元素压入栈S1 操作b 如果栈S1 ...
- NOIP2008双栈排序[二分图染色|栈|DP]
题目描述 Tom最近在研究一个有趣的排序问题.如图所示,通过2个栈S1和S2,Tom希望借助以下4种操作实现将输入序列升序排序. 操作a 如果输入序列不为空,将第一个元素压入栈S1 操作b 如果栈S1 ...
- noip2008 双栈排序
题目描述 Description \(Tom\)最近在研究一个有趣的排序问题.如图所示,通过\(2\)个栈\(S_1\)和\(S_2\),\(Tom\)希望借助以下\(4\)种操作实现将输入序列升序排 ...
- $[NOIp2008]$双栈排序 栈/二分图/贪心
\(Sol\) 先考虑单栈排序,怎么样的序列可以单栈排序呢?设\(a_i\)表示位置\(i\)是哪个数.\(\exist i<j<k\),都没有\(a_k<a_i<a_j\), ...
- Noip2008双栈排序
[问题描述] 用两个栈使一个1...n的排列变得有序.一共有四个操作: A.stack1.push() 读入一个放入栈一 B.stack1.pop() 弹出栈一放入输出序列 C.stack2.push ...
- NOIP2008双栈排序(贪心)
题目描述 Tom最近在研究一个有趣的排序问题.如图所示,通过2个栈S1和S2,Tom希望借助以下4种操作实现将输入序列升序排序. 操作a 如果输入序列不为空,将第一个元素压入栈S1 操作b 如果栈S1 ...
- [luogu1155 NOIP2008] 双栈排序 (二分图染色)
传送门 Description Input 第一行是一个整数 n . 第二行有 n 个用空格隔开的正整数,构成一个 1−n 的排列. Output 共一行,如果输入的排列不是"可双栈排序排列 ...
- Luogu1155 NOIP2008双栈排序(并查集)
两个位置i和j上的元素不能被放进同一个栈的充要条件显然是存在k使i<j<k且ak<ai<aj.由此在保证合法的情况下贪心地放就是正确的了. 至于如何判断,可以记一下后缀最小值, ...
随机推荐
- ExtJS清除表格缓存
背景 在使用ExtJS时遇到不少坑,如果不影响使用也无所谓,但是有些不能忍的,比如表格数据缓存问题.如果第一次打开页面查询出一些数据展示在表格中:第二次打开,即使不查询也会有数据,这是缓存的数据. 我 ...
- HDU 2896 病毒侵袭(AC自动机)题解
题意:给你n个模式串,再给你m个主串,问你每个主串中有多少模式串,并输出是哪些.注意一下,这里给的字符范围是可见字符0~127,所以要开130左右. 思路:用字典树开的时候储存编号,匹配完成后set记 ...
- python文件操作的坑( FileNotFoundError: [Errno 2] No such file or directory...)
环境:Windows8.1, Python3.6 pycharm community 2017 c盘下有一个配置文件:setup with open('c:\\setup','r') as ...
- SpringBoot.资料
1.du 搜 "springboot 视频" 2.SpringBoot视频教程_哔哩哔哩 (゜-゜)つロ 干杯_-bilibili.html(https://www.bilibil ...
- 五句话搞定JavaScript作用域【转】
JavaScript的作用域一直以来是前端开发中比较难以理解的知识点,对于JavaScript的作用域主要记住几句话,走遍天下都不怕... 一.“JavaScript中无块级作用域” 在Java或C# ...
- MOBA游戏学会这些知识,你才算真的入门了!
<英魂之刃口袋版>是一个标准的MOBA游戏,MOBA指的是多人在线战术竞技游戏,游戏模式始于1998年<星际争霸>中的一张自定义地图,经过近20年的优化和调整逐渐演变成了我们现 ...
- 路由跟踪tracert
Tracert命令 如果我们要测试某一个IP都经过哪些路由,用trcert命令即可,这是dos下的一个基本网络命令,具体使用方法: 1,在windows系统下,打开 运行 :输入 cmd :在弹出的d ...
- 无边框WPF窗体——允许拖动
https://blog.csdn.net/zjcxhswill/article/details/38646525
- rspec-rails中的一些匹配器只有在特定的类型才能使用。
请求测试 ) expect(response).not_to have_http_status(:created) Model Specs描述模型的行为,一般基于数据库. Request Spec 主 ...
- ASP.NET Page 指令
一些重要的Page指令 虽然Page公开了很多属性,让我们可以在运行时调整它的状态与行为,但是,还有些重要的参数却是以“指令”方式提供的,需要在设计时就指定.下面是我整理的一些我认为 比较重要并且经常 ...