Beautiful and Powerful Correlation Tables in R
Another correlation function?!
Yes, the correlation
function from the psycho
package.
devtools::install_github("neuropsychology/psycho.R") # Install the newest version
library(psycho)
library(tidyverse)
cor <- psycho::affective %>%
correlation()
This function automatically select numeric variables and run a correlation analysis. It returns apsychobject
.
A table
We can then extract a formatted table that can be saved and pasted into reports and manuscripts by using the summary
function.
summary(cor)
# write.csv(summary(cor), "myformattedcortable.csv")
Age | Life_Satisfaction | Concealing | Adjusting | |
---|---|---|---|---|
Age | ||||
Life_Satisfaction | 0.03 | |||
Concealing | -0.05 | -0.06 | ||
Adjusting | 0.03 | 0.36*** | 0.22*** | |
Tolerating | 0.03 | 0.15*** | 0.07 | 0.29*** |
A Plot
It integrates a plot done with ggcorplot
.
plot(cor)
A print
It also includes a pairwise correlation printing method.
print(cor)
Pearson Full correlation (p value correction: holm):
- Age / Life_Satisfaction: Results of the Pearson correlation showed a non significant and weak negative association between Age and Life_Satisfaction (r(1249) = 0.030, p > .1).
- Age / Concealing: Results of the Pearson correlation showed a non significant and weak positive association between Age and Concealing (r(1249) = -0.050, p > .1).
- Life_Satisfaction / Concealing: Results of the Pearson correlation showed a non significant and weak positive association between Life_Satisfaction and Concealing (r(1249) = -0.063, p > .1).
- Age / Adjusting: Results of the Pearson correlation showed a non significant and weak negative association between Age and Adjusting (r(1249) = 0.027, p > .1).
- Life_Satisfaction / Adjusting: Results of the Pearson correlation showed a significant and moderate negative association between Life_Satisfaction and Adjusting (r(1249) = 0.36, p < .001***).
- Concealing / Adjusting: Results of the Pearson correlation showed a significant and weak negative association between Concealing and Adjusting (r(1249) = 0.22, p < .001***).
- Age / Tolerating: Results of the Pearson correlation showed a non significant and weak negative association between Age and Tolerating (r(1249) = 0.031, p > .1).
- Life_Satisfaction / Tolerating: Results of the Pearson correlation showed a significant and weak negative association between Life_Satisfaction and Tolerating (r(1249) = 0.15, p < .001***).
- Concealing / Tolerating: Results of the Pearson correlation showed a non significant and weak negative association between Concealing and Tolerating (r(1249) = 0.074, p = 0.05°).
- Adjusting / Tolerating: Results of the Pearson correlation showed a significant and weak negative association between Adjusting and Tolerating (r(1249) = 0.29, p < .001***).
Options
You can also cutomize the type (pearson, spearman or kendall), the p value correction method(holm (default), bonferroni, fdr, none…) and run partial, semi-partial or glasso correlations.
psycho::affective %>%
correlation(method = "pearson", adjust="bonferroni", type="partial") %>%
summary()
Age | Life_Satisfaction | Concealing | Adjusting | |
---|---|---|---|---|
Age | ||||
Life_Satisfaction | 0.01 | |||
Concealing | -0.06 | -0.16*** | ||
Adjusting | 0.02 | 0.36*** | 0.25*** | |
Tolerating | 0.02 | 0.06 | 0.02 | 0.24*** |
Fun with p-hacking
In order to prevent people for running many uncorrected correlation tests (promoting p-hacking and result-fishing), we included the i_am_cheating
parameter. If FALSE (default), the function will help you finding interesting results!
df_with_11_vars <- data.frame(replicate(11, rnorm(1000)))
cor <- correlation(df_with_11_vars, adjust="none")
## Warning in correlation(df_with_11_vars, adjust = "none"): We've detected that you are running a lot (> 10) of correlation tests without adjusting the p values. To help you in your p-fishing, we've added some interesting variables: You never know, you might find something significant!
## To deactivate this, change the 'i_am_cheating' argument to TRUE.
summary(cor)
X1 | X2 | X3 | X4 | X5 | X6 | X7 | X8 | X9 | X10 | X11 | |
---|---|---|---|---|---|---|---|---|---|---|---|
X1 | |||||||||||
X2 | -0.04 | ||||||||||
X3 | -0.04 | -0.02 | |||||||||
X4 | 0.02 | 0.05 | -0.02 | ||||||||
X5 | -0.01 | -0.02 | 0.05 | -0.03 | |||||||
X6 | -0.03 | 0.03 | 0.08* | 0.02 | 0.02 | ||||||
X7 | 0.03 | -0.01 | -0.02 | -0.04 | -0.03 | -0.04 | |||||
X8 | 0.01 | -0.07* | 0.04 | 0.02 | -0.01 | -0.01 | 0.00 | ||||
X9 | -0.02 | 0.03 | -0.03 | -0.02 | 0.00 | -0.04 | 0.03 | -0.02 | |||
X10 | -0.03 | 0.00 | 0.00 | 0.01 | 0.01 | -0.01 | 0.01 | -0.02 | 0.02 | ||
X11 | 0.01 | 0.01 | -0.03 | -0.05 | 0.00 | 0.05 | 0.01 | 0.00 | -0.01 | 0.07* | |
Local_Air_Density | 0.26*** | -0.02 | -0.44*** | -0.15*** | -0.25*** | -0.50*** | 0.57*** | -0.11*** | 0.47*** | 0.06 | 0.01 |
Reincarnation_Cycle | -0.03 | -0.02 | 0.02 | 0.04 | 0.01 | 0.00 | 0.05 | -0.04 | -0.05 | -0.01 | 0.03 |
Communism_Level | 0.58*** | -0.44*** | 0.04 | 0.06 | -0.10** | -0.18*** | 0.10** | 0.46*** | -0.50*** | -0.21*** | -0.14*** |
Alien_Mothership_Distance | 0.00 | -0.03 | 0.01 | 0.00 | -0.01 | -0.03 | -0.04 | 0.01 | 0.01 | -0.02 | 0.00 |
Schopenhauers_Optimism | 0.11*** | 0.31*** | -0.25*** | 0.64*** | -0.29*** | -0.15*** | -0.35*** | -0.09** | 0.08* | -0.22*** | -0.47*** |
Hulks_Power | 0.03 | 0.00 | 0.02 | 0.03 | -0.02 | -0.01 | -0.05 | -0.01 | 0.00 | 0.01 | 0.03 |
As we can see, Schopenhauer’s Optimism is strongly related to many variables!!!
Credits
This package was useful? You can cite psycho
as follows:
- Makowski, (2018). The psycho Package: an Efficient and Publishing-Oriented Workflow for Psychological Science. Journal of Open Source Software, 3(22), 470.https://doi.org/10.21105/joss.00470
转自:https://neuropsychology.github.io/psycho.R//2018/05/20/correlation.html
Beautiful and Powerful Correlation Tables in R的更多相关文章
- Interactive pivot tables with R(转)
I love interactive pivot tables. That is the number one reason why I keep using spreadsheet software ...
- Data manipulation primitives in R and Python
Data manipulation primitives in R and Python Both R and Python are incredibly good tools to manipula ...
- R2—《R in Nutshell》 读书笔记(连载)
R in Nutshell 前言 例子(nutshell包) 本书中的例子包括在nutshell的R包中,使用数据,需加载nutshell包 install.packages("nutshe ...
- 使用R进行相关性分析
基于R进行相关性分析 一.相关性矩阵计算: [1] 加载数据: >data = read.csv("231-6057_2016-04-05-ZX_WD_2.csv",head ...
- 基于R进行相关性分析--转载
https://www.cnblogs.com/fanling999/p/5857122.html 一.相关性矩阵计算: [1] 加载数据: >data = read.csv("231 ...
- CF 55D Beautiful numbers (数位DP)
题意: 如果一个正整数能被其所有位上的数字整除,则称其为Beautiful number,问区间[L,R]共有多少个Beautiful number?(1<=L<=R<=9*1018 ...
- HDU 5179 beautiful number (数位dp / 暴力打表 / dfs)
beautiful number Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) ...
- codeforces Beautiful Numbers
来源:http://codeforces.com/problemset/problem/1265/B B. Beautiful Numbers You are given a permutat ...
- 【原创】大数据基础之Marathon(1)简介、安装、使用
marathon 1.6.322 官方:https://mesosphere.github.io/marathon/ 一 简介 Marathon is a production-grade conta ...
随机推荐
- 20155201 2016-2017-2《Java程序设计》课程总结
20155201 2016-2017-2<Java程序设计>课程总结 目录 一.每周作业链接汇总 二.实验报告链接汇总 三.代码托管链接 四.课堂项目实践 五.课程收获与不足 六.问卷调查 ...
- 再也不学AJAX了!(三)跨域获取资源 ③ - WebSocket & postMessage
让我们先简单回顾一下之前谈到的内容,AJAX是一种无页面刷新的获取服务器资源的混合技术.而基于浏览器的"同源策略",不同"域"之间不可以发送AJAX请求.但是在 ...
- UI 交互
动效设计 亮色优缺点 排版 原型图交互说明
- [翻译]PyMongo官方文档
PyMongo官方文档翻译 周煦辰 2016-06-30 这是本人翻译的PyMongo官方文档.现在网上分(抄)享(袭)的PyMongo博客文章很多,一方面这些文章本就是抄袭的,谈不上什么格式美观,另 ...
- ElasticSearch安装和head插件安装
本文主要介绍elasticsearch5.0安装及head插件安装.确保系统已经安装好jdk1.8以上,操作系统CentOS6以上. 一.elasticsearch安装配置 1.官网下载源码包 下载不 ...
- 通过git-bash一句话获得当前目录的全部csproj文件绝对路径
#!/usr/bin/env bash %.sh}.txt 保存为 csprojfilelist.sh,注意换行符使用LF,如果git-bash关联了sh文件,直接双击就可以得到csprojfilel ...
- tomcat 容器下web项目由http改为https操作步骤及相关的坑
一.https介绍: HTTPS(全称:Hypertext Transfer Protocol over Secure Socket Layer),是以安全为目标的HTTP通道,简单讲是HTTP ...
- SSH-Auditor:一款SSH弱密码探测工具
SSH-Auditor:一款SSH弱密码探测工具 freebuf 2018-09-16 ssh-auditor是一款可帮助你探测所在网络中ssh弱密码的工具. 特性 以下操作ssh-auditor都 ...
- lister.ora配置
SID_LIST_LISTENER = (SID_LIST = (SID_DESC = (SID_NAME = PLSExtProc) (ORACLE_HOME = D:\ ...
- BZOJ3707 圈地
只会O(n ^ 3)路过= = OrzOrzOrzOrzOrz "出题人题解: 显然,这时候暴力枚举会T.于是我们转变一下思路,如果我们确定了2个点以后,第三个点有必要去盲目的枚举吗?答案是 ...