1009 产生数 2002年NOIP全国联赛普及组
1009 产生数
2002年NOIP全国联赛普及组
给出一个整数 n(n<10^30) 和 k 个变换规则(k<=15)。
规则:
一位数可变换成另一个一位数:
规则的右部不能为零。
例如:n=234。有规则(k=2):
2-> 5
3-> 6
上面的整数 234 经过变换后可能产生出的整数为(包括原数):
234
534
264
564
共 4 种不同的产生数
问题:
给出一个整数 n 和 k 个规则。
求出:
经过任意次的变换(0次或多次),能产生出多少个不同整数。
仅要求输出个数。
输入描述
Input Description
键盘输人,格式为:
n k
x1 y1
x2 y2
... ...
xn yn
输出描述
Output Description
屏幕输出,格式为:
一个整数(满足条件的个数)
样例输入
Sample Input
234 2
2 5
3 6
样例输出
Sample Output
4
数据范围及提示
Data Size & Hint
思路:
符合变换规则的数可以在变换一次后的新数仍然符合变换规则
所以我们考虑将之转化为一个图论问题
就是考虑从i到j需要经过多少点
经过的点的个数就是可以变换成的数
可是怎么求呢?
用弗洛伊德算法
弗洛伊德是个n^3的动态规划
枚举三个点i,j,k
如果i到j的距离大于i到k加上k到i的距离就会更新i到j的距离
根据这个原理我们可以增加一个计数器
即每更新一次i到j的距离则i的变换数的个数加1
因为n的本身也算是一种排列
所以所有数的变换个数初始为1、
将所有的变换数的个数都求出后
可以通过相乘的积得出总个数
#include<cstdio>
#include<cstring>
#include<iostream>
using namespace std;
long long ans=,num[];
int n,map[][];
char cur[];
int main()
{
memset(map,/,sizeof(map));
scanf("%s",cur);
scanf("%d",&n);
for(int a,b,i=;i<=n;i++)
{
scanf("%d%d",&a,&b);
map[a][b]=;
}
for(int k=;k<=;k++)
{
for(int i=;i<=;i++)
{
for(int j=;j<=;j++)
{
if(i!=j&&j!=k&&k!=i)
if(map[i][k]+map[k][j]<map[i][j])
{
map[i][j]=map[i][k]+map[k][j];
}
}
}
}
for(int i=;i<=;i++)
{
num[i]++;
for(int j=;j<=;j++)
{
if(j==i) continue;
if(map[i][j]<) num[i]++;
}
}
for(int i=;i<strlen(cur);i++) ans=(ans*num[(int)(cur[i]-'')]);
cout<<ans<<endl;
return ;
}
1009 产生数 2002年NOIP全国联赛普及组的更多相关文章
- codevs 1009 产生数 2002年NOIP全国联赛普及组 x (内附解析w)
题目描述 Description 给出一个整数 n(n<10^30) 和 k 个变换规则(k<=15). 规则: 一位数可变换成另一个一位数: 规 ...
- 1008 选数 2002年NOIP全国联赛普及组
1008 选数 2002年NOIP全国联赛普及组 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 黄金 Gold 题解 查看运行结果 题目描述 Description ...
- 选数 2002年NOIP全国联赛普及组
题目描述 Description 已知 n 个整数 x1,x2,-,xn,以及一个整数 k(k<n).从 n 个整数中任选 k 个整数相加,可分别得到一系列的和.例如当 n=4,k=3,4 个整 ...
- Codevs 1010 过河卒 2002年NOIP全国联赛普及组
1010 过河卒 2002年NOIP全国联赛普及组 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 黄金 Gold 传送门 题目描述 Description 如图,A 点有一个过河卒 ...
- 1010 过河卒 2002年NOIP全国联赛普及组codevs
1010 过河卒 2002年NOIP全国联赛普及组codevs 题目描述 Description 如图,A 点有一个过河卒,需要走到目标 B 点.卒行走规则:可以向下.或者向右.同时在棋盘上的任一点 ...
- 【动态规划】【记忆化搜索】CODEVS 1010 过河卒 2002年NOIP全国联赛普及组
f(i,j)=f(i-1,j)+f(i,j-1),显然可以暴力递归求解,但是很多重复的状态,所以可以记忆下来. 注意障碍点和边界的特判. #include<cstdio> #include ...
- 1043 方格取数 2000年NOIP全国联赛提高组
1043 方格取数 2000年NOIP全国联赛提高组 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 钻石 Diamond 题目描述 Description 设有N* ...
- 1099 字串变换 2002年NOIP全国联赛提高组
1099 字串变换 2002年NOIP全国联赛提高组 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 黄金 Gold 题解 题目描述 Description 已知有 ...
- Codevs 1140 Jam的计数法 2006年NOIP全国联赛普及组
1140 Jam的计数法 2006年NOIP全国联赛普及组 传送门 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 黄金 Gold 题目描述 Description Jam是个喜欢标 ...
随机推荐
- ZooKeeper学习之路 (五)ZooKeeper API的简单使用 增删改查
zookeeper文件系统的增删改查 public class ZKDemo1 { private static final String CONNECT_STRING = "hadoop1 ...
- 【CSS-flex】圣杯布局(Holy Grail Layout)、输入框的布局、悬挂式布局、固定的底栏
1.圣杯布局(Holy Grail Layout) 其指的是一种最常见的网站布局.页面从上到下,分成三个部分:头部(header),躯干(body),尾部(footer).其中躯干又水平分成三栏,从左 ...
- virtualbox+vagrant学习-4-Vagrantfile-9-Vagrant Settings
Vagrant Settings 配置命名空间:config.vagrant config.vagrant配置将修改vagrant本身的行为 Available Settings可用设置 config ...
- SVN篇
启动SVN : svnserve -d -r svn 查看进程: ps -ef | grep svmserve -------------------------------------------- ...
- unittest 测试
unittest 测试 单元测试是用来对一个模块.一个函数或者一个类来进行正确性检验的测试工作. 比如对函数abs(),我们可以编写出以下几个测试用例: 输入正数,比如1.1.2.0.99,期待返回值 ...
- ORACLE NLS_LENGTH_SEMANTICS 参数的用途
NLS_LENGTH_SEMANTICS参数是一个专为创建CHAR和VARCHAR2两种字符型的列时,指定使用的字节长度,还是使用字符长度的定义方式,有byte和char两种值,默认为byte. 当设 ...
- HDU 1165 公式推导题
题目链接: acm.hdu.edu.cn/showproblem.php?pid=1165 Eddy's research II Time Limit: 4000/2000 MS (Java/Othe ...
- oracle 子查询的几个种类
1.where型子查询: select cat_id,good_id,good_name from goods where good_id in (selct max(good_id) from go ...
- Spring boot 零配置开发微服务
2018年12月29日星期六 体验Spring boot 零配置开发微服务 1.为什么要用Spring boot? 1.1 简单方便.配置少.整合了大多数框架 1.2 适用于微服务搭建,搭建的微服务 ...
- mariadb或者mysql查看某个库相关的用户授权信息
mariadb或者mysql查看某个库相关的授权信息 SELECT * FROM mysql.Db WHERE Db='DB_NAME';