1009 产生数

2002年NOIP全国联赛普及组

时间限制: 1 s
空间限制: 128000 KB
题目等级 : 黄金 Gold
 
题目描述 Description

  给出一个整数 n(n<10^30) 和 k 个变换规则(k<=15)。
  规则:
   一位数可变换成另一个一位数:
   规则的右部不能为零。
  例如:n=234。有规则(k=2):
    2-> 5
    3-> 6
  上面的整数 234 经过变换后可能产生出的整数为(包括原数):
   234
   534
   264
   564
  共 4 种不同的产生数
问题:
  给出一个整数 n 和 k 个规则。
求出:
  经过任意次的变换(0次或多次),能产生出多少个不同整数。
  仅要求输出个数。

输入描述
Input Description

键盘输人,格式为:
   n k
   x1 y1
   x2 y2
   ... ...
   xn yn

输出描述
Output Description

屏幕输出,格式为:
  一个整数(满足条件的个数)

样例输入
Sample Input

   234 2
   2 5
   3 6

样例输出
Sample Output

4

数据范围及提示
Data Size & Hint

 

思路:

  符合变换规则的数可以在变换一次后的新数仍然符合变换规则

  所以我们考虑将之转化为一个图论问题

  就是考虑从i到j需要经过多少点

  经过的点的个数就是可以变换成的数

  可是怎么求呢?

  用弗洛伊德算法

  弗洛伊德是个n^3的动态规划

  枚举三个点i,j,k

  如果i到j的距离大于i到k加上k到i的距离就会更新i到j的距离

  根据这个原理我们可以增加一个计数器

  即每更新一次i到j的距离则i的变换数的个数加1

  因为n的本身也算是一种排列

  所以所有数的变换个数初始为1、

  将所有的变换数的个数都求出后

  可以通过相乘的积得出总个数

 
 #include<cstdio>
#include<cstring>
#include<iostream>
using namespace std;
long long ans=,num[];
int n,map[][];
char cur[];
int main()
{
memset(map,/,sizeof(map));
scanf("%s",cur);
scanf("%d",&n);
for(int a,b,i=;i<=n;i++)
{
scanf("%d%d",&a,&b);
map[a][b]=;
}
for(int k=;k<=;k++)
{
for(int i=;i<=;i++)
{
for(int j=;j<=;j++)
{
if(i!=j&&j!=k&&k!=i)
if(map[i][k]+map[k][j]<map[i][j])
{
map[i][j]=map[i][k]+map[k][j];
}
}
}
}
for(int i=;i<=;i++)
{
num[i]++;
for(int j=;j<=;j++)
{
if(j==i) continue;
if(map[i][j]<) num[i]++;
}
}
for(int i=;i<strlen(cur);i++) ans=(ans*num[(int)(cur[i]-'')]);
cout<<ans<<endl;
return ;
}

1009 产生数 2002年NOIP全国联赛普及组的更多相关文章

  1. codevs 1009 产生数 2002年NOIP全国联赛普及组 x (内附解析w)

                         题目描述 Description 给出一个整数 n(n<10^30) 和 k 个变换规则(k<=15). 规则: 一位数可变换成另一个一位数: 规 ...

  2. 1008 选数 2002年NOIP全国联赛普及组

    1008 选数 2002年NOIP全国联赛普及组  时间限制: 1 s  空间限制: 128000 KB  题目等级 : 黄金 Gold 题解  查看运行结果     题目描述 Description ...

  3. 选数 2002年NOIP全国联赛普及组

    题目描述 Description 已知 n 个整数 x1,x2,-,xn,以及一个整数 k(k<n).从 n 个整数中任选 k 个整数相加,可分别得到一系列的和.例如当 n=4,k=3,4 个整 ...

  4. Codevs 1010 过河卒 2002年NOIP全国联赛普及组

    1010 过河卒 2002年NOIP全国联赛普及组 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 黄金 Gold 传送门 题目描述 Description 如图,A 点有一个过河卒 ...

  5. 1010 过河卒 2002年NOIP全国联赛普及组codevs

    1010 过河卒  2002年NOIP全国联赛普及组codevs 题目描述 Description 如图,A 点有一个过河卒,需要走到目标 B 点.卒行走规则:可以向下.或者向右.同时在棋盘上的任一点 ...

  6. 【动态规划】【记忆化搜索】CODEVS 1010 过河卒 2002年NOIP全国联赛普及组

    f(i,j)=f(i-1,j)+f(i,j-1),显然可以暴力递归求解,但是很多重复的状态,所以可以记忆下来. 注意障碍点和边界的特判. #include<cstdio> #include ...

  7. 1043 方格取数 2000年NOIP全国联赛提高组

    1043 方格取数 2000年NOIP全国联赛提高组 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 钻石 Diamond         题目描述 Description 设有N* ...

  8. 1099 字串变换 2002年NOIP全国联赛提高组

    1099 字串变换 2002年NOIP全国联赛提高组  时间限制: 1 s  空间限制: 128000 KB  题目等级 : 黄金 Gold 题解       题目描述 Description 已知有 ...

  9. Codevs 1140 Jam的计数法 2006年NOIP全国联赛普及组

    1140 Jam的计数法 2006年NOIP全国联赛普及组 传送门 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 黄金 Gold 题目描述 Description Jam是个喜欢标 ...

随机推荐

  1. 死磕salt系列-salt配置文件

    这篇文件主要用来解释一下salt配置中常用的参数,其他的参数可以参考官网文档. 基础参数 interface: 服务器监听地址. ipv6: 是否启用ipv6. max_open_files: 最大文 ...

  2. 随手练——HDU Safe Or Unsafe (小根堆解决哈夫曼问题)

    HDU 2527 :http://acm.hdu.edu.cn/showproblem.php?pid=2527 哈夫曼树,学完就忘得差不多了,题目的意思都没看懂,有时间复习下,看了别人的才知道是怎么 ...

  3. Kali-linux Arpspoof工具

    Arpspoof是一个非常好的ARP欺骗的源代码程序.它的运行不会影响整个网络的通信,该工具通过替换传输中的数据从而达到对目标的欺骗.本节将介绍Arpspoof工具的 使用. 9.8.1 URL流量操 ...

  4. 新闻cms管理系统(一) ---- thinkphp框架准备

    1.thinkphp介绍 一个快速.简单的基于MVC和面向对象的轻量级PHP开发框架 MVC:M数据层. V视图层 . C控制层 优点: (1)入手非常快 (2)thinkpjp提供核心内库.文件.函 ...

  5. sqoop mysql--->hive 报错 (ERROR tool.ImportTool: Import failed: java.io.IOException: java.lang.ClassNotFoundException: org.apache.hadoop.hive.conf.HiveConf)

    ERROR tool.ImportTool: Import failed: java.io.IOException: java.lang.ClassNotFoundException: org.apa ...

  6. Oracle输出数字1-10

    ,) from dual connect by level<

  7. Java SSM 客户管理 商户 管理系统 库存管理 销售报表 项目源码

    系统介绍: 1.系统采用主流的 SSM 框架 jsp JSTL bootstrap html5 (PC浏览器使用) 2.springmvc +spring4.3.7+ mybaits3.3  SSM ...

  8. docker搭建本地私仓

    环境centos7  docker-ce 18 启动仓库镜像 docker run -d -p 5000:5000 registry:2 docker images 通过docker tag 标识镜像 ...

  9. Easyui之accordion修改Title样式,字体等

    .accordion{background:#fff;overflow:hidden;}.accordion .accordion-header{background:#efefef;border-t ...

  10. OO课程总结

    OO课程总结 OO终于划上了句号,这学期熬夜熬得最多的一门课,掉了最多头发的一门课. 一.测试与正确性 测试是最最最常见的用来找到程序错误以及验证程序正确的手段,在之前的作业中,写完代码还是会存在很多 ...