Description

Input

第一行有四个整数 n, p, k, r,所有整数含义见问题描述。
1 ≤ n ≤ 10^9, 0 ≤ r < k ≤ 50, 2 ≤ p ≤ 2^30 − 1

Output

一行一个整数代表答案。

Sample Input

2 10007 2 0

Sample Output

8

Solution

考虑这个式子的组合数意义,发现其实就是从$n*k$个物品里面取$\%k=r$件物品的方案数。
所以$f[i][j]$表示放完前$i$个,余数为$j$的方案数。$f[i][j] = f[i-1][j] + f[i - 1][(j - 1 + k) \% k]$,矩乘优化一下就可以了。

Code

 #include<iostream>
#include<cstring>
#include<cstdio>
#define LL long long
using namespace std; LL n,MOD,k,r; struct Matrix
{
LL m[][];
Matrix(){memset(m,,sizeof(m));}
Matrix operator * (const Matrix &b) const
{
Matrix c;
for (int i=; i<; ++i)
for (int j=; j<; ++j)
for (int k=; k<; ++k)
(c.m[i][j]+=m[i][k]*b.m[k][j])%=MOD;
return c;
}
}A,ans; Matrix Qpow(Matrix a,LL b)
{
Matrix ans;
for (int i=; i<; ++i) ans.m[i][i]=;
while (b)
{
if (b&) ans=ans*a;
a=a*a; b>>=;
}
return ans;
} int main()
{
scanf("%lld%lld%lld%lld",&n,&MOD,&k,&r);
for (int i=; i<k; ++i)
{
A.m[i][i]++;
A.m[(i-+k)%k][i]++;
}
ans.m[][]=;
ans=ans*Qpow(A,n*k);
printf("%lld\n",ans.m[][r]);
}

BZOJ4870:[SHOI2017]组合数问题(组合数学,矩阵乘法)的更多相关文章

  1. BZOJ_4870_[Shoi2017]组合数问题_矩阵乘法

    BZOJ_4870_[Shoi2017]组合数问题_矩阵乘法 Description Input 第一行有四个整数 n, p, k, r,所有整数含义见问题描述. 1 ≤ n ≤ 10^9, 0 ≤ ...

  2. [BZOJ4870][Shoi2017]组合数问题 dp+矩阵乘

    4870: [Shoi2017]组合数问题 Time Limit: 10 Sec  Memory Limit: 512 MB Description Input 第一行有四个整数 n, p, k, r ...

  3. BZOJ 4870 [Shoi2017]组合数问题 ——动态规划 矩阵乘法

    注意到$r<k$ 别问我为什么要强调. 考场上前30分水水. 然后写阶乘的时候大力$n\log {n}$预处理 本机跑的挺快的,然后稳稳的T掉了. 然后就是简单的矩阵乘法了. #include ...

  4. bzoj4870: [Shoi2017]组合数问题(DP+矩阵乘法优化)

    为了1A我居然写了个暴力对拍... 那个式子本质上是求nk个数里选j个数,且j%k==r的方案数. 所以把组合数的递推式写出来f[i][j]=f[i-1][j]+f[i-1][(j-1+k)%k].. ...

  5. BZOJ4870: [Shoi2017]组合数问题

    4870: [Shoi2017]组合数问题 Description Input 第一行有四个整数 n, p, k, r,所有整数含义见问题描述. 1 ≤ n ≤ 10^9, 0 ≤ r < k ...

  6. BZOJ4870 [Shoi2017]组合数问题 【组合数 + 矩乘】

    题目链接 BZOJ4870 题解 \[ans = \sum\limits_{i = 0}^{\infty}{nk \choose ik + r} \pmod p\] 发现实际是求 \[ans = \s ...

  7. 【BZOJ4870】[Shoi2017]组合数问题 动态规划(矩阵乘法)

    [BZOJ4870][Shoi2017]组合数问题 Description Input 第一行有四个整数 n, p, k, r,所有整数含义见问题描述. 1 ≤ n ≤ 10^9, 0 ≤ r < ...

  8. 【bzoj4870】[Shoi2017]组合数问题 dp+快速幂/矩阵乘法

    题目描述 输入 第一行有四个整数 n, p, k, r,所有整数含义见问题描述. 1 ≤ n ≤ 10^9, 0 ≤ r < k ≤ 50, 2 ≤ p ≤ 2^30 − 1 输出 一行一个整数 ...

  9. 【BZOJ4870】组合数问题 [矩阵乘法][DP]

    组合数问题 Time Limit: 10 Sec  Memory Limit: 512 MB[Submit][Status][Discuss] Description Input 第一行有四个整数 n ...

随机推荐

  1. TRUNCATE TABLE 与 DELETE的区别

    delete from aatruncate table aa 区别1.delete from后面可以写条件,truncate不可以2.delete from记录是一条条删的,所删除的每行记录都会进日 ...

  2. vim 编辑器常规操作

    所看视频教程:兄弟连Linux云计算视频教程5.1文本编辑器Vim-5.2 插入命令 a:在光标所在字符后插入; A:在光标所在行尾插入; i:在光标所在字符前插入; I:在光标所在字符行行首插入; ...

  3. memcache 学习笔记

    Memcached是国外社区网站LiveJournal的开发团队开发的高性能的分布式内存缓存服务器.一般的使用目的是,通过缓存数据库查询结果,减少数据库访问次数,以提高动态Web应用的速度.提高可扩展 ...

  4. 最全的HTTP 响应状态码列表!

    摘要: HTTP状态码,我们要学会现查现用能记住最好. 简单举例几个常用的状态码,比如200,302,304,404, 503. 一般来说我也只需要了解这些常用的状态码就可以了.如果是做AJAX,RE ...

  5. Java集合 之Map(HashMap、Hashtable 、TreeMap、WeakHashMap )理解(new)

    HashMap 说明: 在详细介绍HashMap的代码之前,我们需要了解:HashMap就是一个散列表,它是通过“拉链法”解决哈希冲突的.还需要再补充说明的一点是影响HashMap性能的有两个参数:初 ...

  6. UOJ#400. 【CTSC2018】暴力写挂

    传送门 看到要求两棵树的 \(lca\) 深度不太好操作 考虑枚举第二棵树的 \(lca\),这样剩下的都是只和第一棵树有关的 而注意到 \(dis(x,y)=d(x)+d(y)-2d(lca(x,y ...

  7. BZOJ1258 [CQOI2007]三角形

    Description 画一个等边三角形,把三边的中点连接起来,得到四个三角形,把它们称为T1,T2,T3,T4,如图1.把前三个三角形也这样划分,得到12个更小的三角形:T11,T12,T13,T1 ...

  8. 使用PuTTy在CentOS下安装web.py与简单的文件传输

    两周前,出于帮朋友忙的目的,尝试了一下微信公众号的菜单自定义与自动回复功能的实现,成了. 两周后,需要将代码转移至朋友新购的服务器上,发现基本操作全忘记了,麻瓜!所以记一笔,希望也能对大家也有帮助. ...

  9. Android深入理解Context(三)Context完全解析

      1· Context类型        我们知道,Android应用都是使用Java语言来编写的,那么大家可以思考一下,一个Android程序和一个Java程序,他们最大的区别在哪里?划分界限又是 ...

  10. js API列表

    //  主要是ES的API和一小部分浏览器的API. //  新加入标准的API有可能是浏览器事实上早已实现的. //   ECMAScript目前是每年都会发布新版本(目前已经相对稳定,每年都会又增 ...