【BZOJ2118】墨墨的等式

Description

墨墨突然对等式很感兴趣,他正在研究a1x1+a2y2+…+anxn=B存在非负整数解的条件,他要求你编写一个程序,给定N、{an}、以及B的取值范围,求出有多少B可以使等式存在非负整数解。

Input

输入的第一行包含3个正整数,分别表示N、BMin、BMax分别表示数列的长度、B的下界、B的上界。输入的第二行包含N个整数,即数列{an}的值。

Output

输出一个整数,表示有多少b可以使等式存在非负整数解。

Sample Input

2 5 10
3 5

Sample Output

5

HINT

对于100%的数据,N≤12,0≤ai≤5*10^5,1≤BMin≤BMax≤10^12。

题解:这是一个经典的套路~

由于ai的值<=5*10^5,所以我们随便选择其中的一个a1,然后建出一个a1个点的图,对于所有点i和数j,从i向(i+aj)%a1连边,长度为(i+aj)/a1。这样以来,从0到i的最短路长度就等于:最小的%a1=i的数/a1的值。然后统计答案即可,统计时注意一下边界条件的判断。

#include <cstdio>
#include <cstring>
#include <iostream>
#include <queue>
using namespace std;
const int maxn=500010;
typedef long long ll;
queue<int> q;
int n;
int inq[maxn];
ll m,L,R,ans;
ll dis[maxn],v[20];
int main()
{
memset(dis,0x3f,sizeof(dis));
scanf("%d%lld%lld",&n,&L,&R);
int i,u;
for(m=1<<30,i=1;i<=n;i++) scanf("%lld",&v[i]),m=min(m,v[i]);
dis[0]=0,q.push(0);
while(!q.empty())
{
u=q.front(),q.pop(),inq[u]=0;
for(i=1;i<=n;i++)
{
if(dis[(u+v[i])%m]>dis[u]+(u+v[i])/m)
{
dis[(u+v[i])%m]=dis[u]+(u+v[i])/m;
if(!inq[(u+v[i])%m]) q.push((u+v[i])%m);
}
}
}
for(i=0;i<m;i++) if((R-i)/m>=dis[i]) ans+=(R-i)/m-max((L-1-i)/m,(ll)dis[i]-1);
printf("%lld",ans);
return 0;
}

【BZOJ2118】墨墨的等式 最短路的更多相关文章

  1. 【BZOJ2118】墨墨的等式(最短路)

    [BZOJ2118]墨墨的等式(最短路) 题面 BZOJ 洛谷 题解 和跳楼机那题是一样的. 只不过走的方式从\(3\)种变成了\(n\)种而已,其他的根本没有区别了. #include<ios ...

  2. BZOJ2118:墨墨的等式(最短路)

    Description 墨墨突然对等式很感兴趣,他正在研究a1x1+a2y2+…+anxn=B存在非负整数解的条件,他要求你编写一个程序,给定N.{an}.以及B的取值范围,求出有多少B可以使等式存在 ...

  3. BZOJ2118: 墨墨的等式(最短路 数论)

    题意 墨墨突然对等式很感兴趣,他正在研究a1x1+a2y2+…+anxn=B存在非负整数解的条件,他要求你编写一个程序,给定N.{an}.以及B的取值范围,求出有多少B可以使等式存在非负整数解. So ...

  4. BZOJ2118: 墨墨的等式(最短路构造/同余最短路)

    Description 墨墨突然对等式很感兴趣,他正在研究a1x1+a2y2+…+anxn=B存在非负整数解的条件,他要求你编写一个程序,给定N.{an}.以及B的取值范围,求出有多少B可以使等式存在 ...

  5. BZOJ2118墨墨的等式[数论 最短路建模]

    2118: 墨墨的等式 Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 1317  Solved: 504[Submit][Status][Discus ...

  6. BZOJ2118 墨墨的等式 【最短路】

    题目链接 BZOJ2118 题解 orz竟然是最短路 我们去\(0\)后取出最小的\(a[i]\),记为\(p\),然后考虑模\(p\)下的\(B\) 一个数\(i\)能被凑出,那么\(i + p\) ...

  7. Bzoj2118 墨墨的等式

    Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 1488  Solved: 578 Description 墨墨突然对等式很感兴趣,他正在研究a1x1+ ...

  8. bzoj 2118 墨墨的等式 - 图论最短路建模

    墨墨突然对等式很感兴趣,他正在研究a1x1+a2y2+…+anxn=B存在非负整数解的条件,他要求你编写一个程序,给定N.{an}.以及B的取值范围,求出有多少B可以使等式存在非负整数解. Input ...

  9. 【BZOJ 2118】 2118: 墨墨的等式 (最短路)

    2118: 墨墨的等式 Description 墨墨突然对等式很感兴趣,他正在研究a1x1+a2y2+…+anxn=B存在非负整数解的条件,他要求你编写一个程序,给定N.{an}.以及B的取值范围,求 ...

随机推荐

  1. svn删除项目目录

    cmd svn delete -m "质控" svn://192.168.0.253/repos1/质控

  2. Boostrap入门级css样式学习

    1. 自适应网页设计 首先,在网页代码的头部,加入一行 viewport元标签.viewport是网页默认的宽度和高度, <meta name="viewport" cont ...

  3. javaScript之function定义

    背景知识 函数定义 在javaScript中,function的定义有3种: 1.匿名定义                function(){} 2.非匿名定义                fun ...

  4. 【转】nginx中proxy_set_header Host $host的作用

    nginx为了实现反向代理的需求而增加了一个ngx_http_proxy_module模块.其中proxy_set_header指令就是该模块需要读取的配置文件.在这里,所有设置的值的含义和http请 ...

  5. hadoop集群运行dedup实现去重功能

    一.配置开发环境1.我们用到的IDE是eclipse.要用它进行hadoop编程,要给eclipse安装hadoop自带的插件.(有的版本以源码提供插件,需要用户根据需要自己编译)2.用到的eclip ...

  6. 自然语言交流系统 phxnet团队 创新实训 项目博客 (一)

    2D文字聊天界面大致预期实现文字输入.发送消息.接收消息.你可以通过点击按钮让机器人开启聊天模式或者学习模式.又或是进入3D语音聊天界面或者退出. 目背景 (1) 开发动机的形态 随着科技的进步与生活 ...

  7. android 虚拟键盘控制

    软键盘显示的原理 软键盘的本质是什么?软键盘其实是一个Dialog! InputMethodService为我们的输入法创建了一个Dialog,并且将该Dialog的Window的某些参数(如Grav ...

  8. 【转】C#调用WebService实例和开发

    一.基本概念 Web Service也叫XML Web Service WebService是一种可以接收从Internet或者Intranet上的其它系统中传递过来的请求,轻量级的独立的通讯技术.是 ...

  9. Javascript 严格模式 strict mode(转)

    一.概述 除了正常运行模式,ECMAscript 5添加了第二种运行模式:"严格模式"(strict mode).顾名思义,这种模式使得Javascript在更严格的条件下运行. ...

  10. MindManager篇

    MindManager:新建脑图 MindManager:大纲视图(批阅文档结构) MindManager:导出为其他格式 MindManager:插入基本插入主题.备注,标记等) MindManag ...