【bzoj5028】小Z的加油店 扩展裴蜀定理+差分+线段树
题目描述
输入
输出
样例输入
3 4
2 3 4
1 1 3
2 2 2 1
1 1 3
1 2 3
样例输出
1
2
4
题解
扩展裴蜀定理+差分+线段树
由 【bzoj2257】瓶子和燃料 的结论,答案为区间 $\gcd$ 。
那么问题转化为:区间加、区间求 $\gcd$ 。
直接解决这个问题比较困难。我们知道,$\gcd(a,b,c)=\gcd(a,b-a,c-b)$ ,即区间 $\gcd$ 等于 $l$ 位置的数与 $[l+1,r]$ 的差分数组的 $\gcd$ 。而区间加在差分数组上表现为单点加减,较容易维护。
因此对原数组求差分数组,修改时在差分数组上进行单点加减,查询时查询差分数组的前缀和及区间 $\gcd$ ,最大公约数即为答案。
时间复杂度 $O(n\log n)$ (求 $\gcd$ 的 $\log$ 在线段树pushup的过程中均摊掉了,因此只有一个 $\log$ )
#include <cstdio>
#include <algorithm>
#define N 100010
#define lson l , mid , x << 1
#define rson mid + 1 , r , x << 1 | 1
using namespace std;
int a[N] , sum[N << 2] , val[N << 2];
inline int gcd(int a , int b)
{
int t;
while(b) t = a , a = b , b = t % b;
return a;
}
inline void pushup(int x)
{
sum[x] = sum[x << 1] + sum[x << 1 | 1] , val[x] = gcd(val[x << 1] , val[x << 1 | 1]);
}
void build(int l , int r , int x)
{
if(l == r)
{
sum[x] = val[x] = a[l] - a[l - 1];
return;
}
int mid = (l + r) >> 1;
build(lson) , build(rson);
pushup(x);
}
void update(int p , int a , int l , int r , int x)
{
if(p > r) return;
if(l == r)
{
sum[x] += a , val[x] += a;
return;
}
int mid = (l + r) >> 1;
if(p <= mid) update(p , a , lson);
else update(p , a , rson);
pushup(x);
}
int qsum(int p , int l , int r , int x)
{
if(l == r) return sum[x];
int mid = (l + r) >> 1;
if(p <= mid) return qsum(p , lson);
else return qsum(p , rson) + sum[x << 1];
}
int qval(int b , int e , int l , int r , int x)
{
if(b > e) return 0;
if(b <= l && r <= e) return val[x];
int mid = (l + r) >> 1 , ans = 0;
if(b <= mid) ans = gcd(ans , qval(b , e , lson));
if(e > mid) ans = gcd(ans , qval(b , e , rson));
return ans;
}
int main()
{
int n , m , i , opt, l , r , x;
scanf("%d%d" , &n , &m);
for(i = 1 ; i <= n ; i ++ ) scanf("%d" , &a[i]);
build(1 , n , 1);
while(m -- )
{
scanf("%d%d%d" , &opt , &l , &r);
if(opt == 1) printf("%d\n" , abs(gcd(qsum(l , 1 , n , 1) , qval(l + 1 , r , 1 , n , 1))));
else scanf("%d" , &x) , update(l , x , 1 , n , 1) , update(r + 1 , -x , 1 , n , 1);
}
return 0;
}
【bzoj5028】小Z的加油店 扩展裴蜀定理+差分+线段树的更多相关文章
- [BZOJ5028]小Z的加油店
[BZOJ5028]小Z的加油店 题目大意: 一个长度为\(n(n\le10^5)\)的数列,\(m(m\le10^5)\)次操作,支持区间加和区间\(\gcd\). 思路: 线段树维护差分,\(\g ...
- bzoj5028小Z的加油店(线段树+差分)
题意:维护支持以下两种操作的序列:1 l r询问a[l...r]的gcd,2 l r x把a[l...r]全部+x 题解:一道经典题.根据gcd(a,b)=gcd(a-b,b)以及区间加可知,这题可以 ...
- D - 小Z的加油店 线段树+差分+GCD
D - 小Z的加油店 HYSBZ - 5028 这个题目是一个线段树+差分+GCD 推荐一个差分的博客:https://www.cnblogs.com/cjoierljl/p/8728110.ht ...
- 【bzoj2257】[Jsoi2009]瓶子和燃料 扩展裴蜀定理+STL-map
题目描述 给出 $n$ 个瓶子和无限的水,每个瓶子有一定的容量.每次你可以将一个瓶子装满水,或将A瓶子内的水倒入B瓶子中直到A倒空或B倒满.从中选出 $k$ 个瓶子,使得能够通过这 $k$ 个瓶子凑出 ...
- 【bzoj1441】Min 扩展裴蜀定理
题目描述 给出n个数(A1...An)现求一组整数序列(X1...Xn)使得S=A1*X1+...An*Xn>0,且S的值最小 输入 第一行给出数字N,代表有N个数 下面一行给出N个数 输出 S ...
- BZOJ 5028 小Z的加油店
[题解] 本题要求求出区间内的各个元素通过加减之后能够得出的最小的数,那么根据裴蜀定理可知答案就是区间内各个元素的最大公约数. 那么本题题意化简成了维护一个序列,支持区间加上某个数以及查询区间元素的最 ...
- bzoj 5028: 小Z的加油店——带修改的区间gcd
Description 小Z经营一家加油店.小Z加油的方式非常奇怪.他有一排瓶子,每个瓶子有一个容量vi.每次别人来加油,他会让 别人选连续一段的瓶子.他可以用这些瓶子装汽油,但他只有三种操作: 1. ...
- 5028: 小Z的加油店(线段树)
NOI2012魔幻棋盘弱化版 gcd(a,b,c,d,e)=gcd(a,b-a,c-b,d-c,e-d) 然后就可以把区间修改变成差分后的点修了. 用BIT维护原序列,线段树维护区间gcd,支持点修区 ...
- 【BZOJ】5028: 小Z的加油店
[算法]数学+线段树/树状数组 [题解] 首先三个操作可以理解为更相减损术或者辗转相除法(待证明),所以就是求区间gcd. 这题的问题在线段树维护gcd只能支持修改成一个数,不支持加一个数. 套路:g ...
随机推荐
- HBase——使用Put迁移MySql数据到Hbase
先上code: /** * 功能:迁移mysql上电池历史数据到hbase * Created by liuhuichao on 2016/12/6. */ public class MySqlToH ...
- 「PKUWC2018」Minimax
题面 题解 强势安利一波巨佬的$blog$ 线段树合并吼题啊 合并的时候要记一下$A$点权值小于$l$的概率和$A$点权值大于$r$的概率,对$B$点同样做 时空复杂度$\text O(nlogw)$ ...
- CF 868 F. Yet Another Minimization Problem
F. Yet Another Minimization Problem http://codeforces.com/contest/868/problem/F 题意: 给定一个长度为n的序列.你需要将 ...
- OKHttp使用demo(证书过滤,证书导入,代理访问,文件上传)
此demo需要引入okhttp-3.4.1.jar 和 okio-1.9.0.jar(这两个包需要jdk1.7以上的环境) 对应pom文件是: <dependency> <group ...
- 网络通讯中 bind函数的作用
面向连接的网络应用程序分为客户端和服务器端.服务器端的执行流程一般为4步,客户端程序相对简单,一般需要两个步骤. 服务器端执行流程4步如下: (1)调用socket函数,建立一个套接字,该套接字用于接 ...
- 001----Mysql隔离级别
一:事务隔离级别 mysql数据库的隔离界别如下: 1, READ UNCOMMITTED(未提交读) 事务中的修改,即使没有提交,对其它事务也是可见的. 这样会造成脏读(Dirty Read)的问 ...
- 【python 3.6】python读取json数据存入MySQL(二)
在网上找到一个包含全国各省市经纬度的json文件,也可以通过上次的办法,解析json关键字,构造SQL语句,插入数据库. JSON文件格式如下: [ { "name": " ...
- [转载] Centos7的安装、Docker1.12.3的安装,以及Docker Swarm集群的简单实例
1.环境准备 本文中的案例会有四台机器,他们的Host和IP地址如下 c1 -> 10.0.0.31 c2 -> 10.0.0.32 c3 -> 10.0.0.33 c4 -&g ...
- linux下搭建python机器学习环境
前言 在 linux 下搭建 python 机器学习环境还是比较容易的,考虑到包依赖的问题,最好建立一个虚拟环境作为机器学习工作环境,在建立的虚拟环境中,再安装各种需要的包,主要有以下6个(这是看这个 ...
- hashlib模块使用详情
python常用模块目录 一:hashlib简介 1.什么叫hash:hash是一种算法(不同的hash算法只是复杂度不一样)(3.x里代替了md5模块和sha模块,主要提供 SHA1, SHA224 ...