题意: 求两个矩形最大公共子正方形。(n<=50)

范围这么小可以枚举子正方形的边长。那么可以对这个矩形进行二维hash,就可以在O(1)的时候求出任意子矩形的hash值。然后判断这些正方形的hash值有没有相同的

部分就行了。可以用二分来判断。

需要注意的是行和列乘的hash种子值需要不同的质数,否则可能出现冲突。

时间复杂度O(n^3logn).

# include <cstdio>
# include <cstring>
# include <cstdlib>
# include <iostream>
# include <vector>
# include <queue>
# include <stack>
# include <map>
# include <set>
# include <cmath>
# include <algorithm>
using namespace std;
# define lowbit(x) ((x)&(-x))
# define pi acos(-1.0)
# define eps 1e-
# define MOD
# define INF
# define mem(a,b) memset(a,b,sizeof(a))
# define FOR(i,a,n) for(int i=a; i<=n; ++i)
# define FO(i,a,n) for(int i=a; i<n; ++i)
# define bug puts("H");
# define lch p<<,l,mid
# define rch p<<|,mid+,r
# define mp make_pair
# define pb push_back
typedef pair<int,int> PII;
typedef vector<int> VI;
# pragma comment(linker, "/STACK:1024000000,1024000000")
typedef long long LL;
int Scan() {
int x=,f=;char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>=''&&ch<=''){x=x*+ch-'';ch=getchar();}
return x*f;
}
void Out(int a) {
if(a<) {putchar('-'); a=-a;}
if(a>=) Out(a/);
putchar(a%+'');
}
const int N=;
//Code begin... int hash1[N][N], hash2[N][N], P[N*N], Q[N*N], n;
VI a;
VI::iterator it; bool check(int ans){
FOR(i,ans,n) FOR(j,ans,n) {
int tmp=hash2[i][j]-hash2[i-ans][j]*Q[ans]-hash2[i][j-ans]*P[ans]+hash2[i-ans][j-ans]*P[ans]*Q[ans];
it=lower_bound(a.begin(),a.end(),tmp);
if (it==a.end()||*it!=tmp) continue;
return true;
}
return false;
}
int main ()
{
scanf("%d",&n);
P[]=; FOR(i,,) P[i]=P[i-]*;
Q[]=; FOR(i,,) Q[i]=Q[i-]*;
FOR(i,,n) FOR(j,,n) scanf("%d",&hash1[i][j]), hash1[i][j]+=hash1[i][j-]*P[];
FOR(i,,n) FOR(j,,n) hash1[i][j]+=hash1[i-][j]*Q[];
FOR(i,,n) FOR(j,,n) scanf("%d",&hash2[i][j]), hash2[i][j]+=hash2[i][j-]*P[];
FOR(i,,n) FOR(j,,n) hash2[i][j]+=hash2[i-][j]*Q[];
int ans;
for (ans=n; ans>=; --ans) {
a.clear();
FOR(i,ans,n) FOR(j,ans,n) a.pb(hash1[i][j]-hash1[i-ans][j]*Q[ans]-hash1[i][j-ans]*P[ans]+hash1[i-ans][j-ans]*P[ans]*Q[ans]);
sort(a.begin(),a.end());
if (check(ans)) break;
}
printf("%d\n",ans);
return ;
}

BZOJ 1567 Blue Mary的战役地图(二维hash+二分)的更多相关文章

  1. [BZOJ 1567] Blue Mary的战役地图

    Link: BZOJ 1567 传送门 Solution: 矩阵Hash/二维$Hash$模板题 涉及到需要快速查询.匹配的题目,考虑直接上$Hash$ 矩阵$Hash$其实就是每行先各$Hash$一 ...

  2. [JSOI2008] [BZOJ1567] Blue Mary的战役地图 解题报告 (hash)

    题目链接:https://www.lydsy.com/JudgeOnline/problem.php?id=1567 Description Blue Mary最近迷上了玩Starcraft(星际争霸 ...

  3. BZOJ 1567: [JSOI2008]Blue Mary的战役地图 矩阵二维hash

    1567: [JSOI2008]Blue Mary的战役地图 Description Blue Mary最近迷上了玩Starcraft(星际争霸) 的RPG游戏.她正在设法寻找更多的战役地图以进一步提 ...

  4. BZOJ 1567: [JSOI2008]Blue Mary的战役地图( 二分答案 + hash )

    二分答案, 然后用哈希去判断... ------------------------------------------------------------------------- #include ...

  5. BZOJ 1567: [JSOI2008]Blue Mary的战役地图

    1567: [JSOI2008]Blue Mary的战役地图 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 1011  Solved: 578[Sub ...

  6. bzoj1567: [JSOI2008]Blue Mary的战役地图

    将矩阵hash.s[0]忘了弄成0,输出中间过程发现了. hash.sort.判重.大概这样子的步骤吧. #include<cstdio> #include<cstring> ...

  7. BZOJ1567 [JSOI2008]Blue Mary的战役地图(二分+二维hash)

    题意 问边长为n的两个正方形中最大的相等子正方形.(n<=50) 题解 用到了二维hash,感觉和一维的不太一样. 对于列行有两个不同的进制数然后也是通过类似前缀和的方法差分出一个矩形的hash ...

  8. 牛客练习赛1 矩阵 字符串二维hash+二分

    题目 https://ac.nowcoder.com/acm/contest/2?&headNav=www#question 解析 我们对矩阵进行二维hash,所以每个子矩阵都有一个额hash ...

  9. bzoj 1567: [JSOI2008]Blue Mary的战役地图【二分+hash】

    二维哈希+二分 说是二维,其实就是先把列hash了,然后再用列的hash值hash行,这样可以O(n)的计算一个正方形的hash值,然后二分边长,枚举左上角点的坐标然后hash判断即可 只要base选 ...

随机推荐

  1. 20155331 2016-2017-2 《Java程序设计》

    20155331 2016-2017-2 <Java程序设计> 教材学习内容总结 理解封装,继承和多态. 封装最简单的理解就是包装,把编译的class文件封装起来,便于管理,还可以设置密码 ...

  2. OpenCV人脸识别的原理 .

    OpenCV人脸识别的原理 . 在之前讲到的人脸测试后,提取出人脸来,并且保存下来,以供训练或识别是用,提取人脸的代码如下: void GetImageRect(IplImage* orgImage, ...

  3. spark on yarn 资源调度(cdh为例)

    一.CPU配置: ApplicationMaster 虚拟 CPU内核 yarn.app.mapreduce.am.resource.cpu-vcores ApplicationMaster占用的cp ...

  4. idea 从javadoc中复制内容出来

    打开 tool window就行了 经验:百度google不到的东西太多了,要学会自己想办法,至少也要把功能都试一遍吧, 而且像这种东西官方一般会给方法实现你的目的,只不过有时候是把功能迁移了或者整合 ...

  5. 探寻ASP.NET MVC鲜为人知的奥秘(2):与Entity Framework配合,让异步贯穿始终

    Why 在应用程序,尤其是互联网应用程序中,性能一直是很多大型网站的困扰,由于Web2.0时代的到来,人们更多的把应用程序从C/S结构迁移到B/S结构,这样会带来客户端轻量,部署.试试方便快捷等优势, ...

  6. Spring学习(十二)-----Spring @PostConstruct和@PreDestroy实例

    实现 初始化方法和销毁方法3种方式: 实现标识接口 InitializingBean,DisposableBean(不推荐使用,耦合性太高) 设置bean属性 Init-method destroy- ...

  7. zigbee路由(报文实例)

    4855 广播  routeRequestId = 6, pathCost = 0 radius=1E 62BB 继续广播 routeRequestId = 6, pathCost = 1 radiu ...

  8. Swoole实现h5版聊天室笔记

    声明:该聊天室目前只有一对多,一对一的聊天功能,另外,因为没有使用到mysql,所以还存在比较多的缺陷地方,但知道原理就差不多了,这里主要分享下swoole简易的聊天室制作思路. 开发环境:cento ...

  9. OAI搭建总结

    我是参考网上的方法:oai搭建之eNB的文章, 接下来就根据自身所遇到的问题再这里总结一下步骤: 一.再官网上下载oai的文件openairinterface5g-master.zip 二.编译的过程 ...

  10. C#入门经典第十章例题 - - 卡牌

    1.库 using System; using System.Collections.Generic; using System.Linq; using System.Text; namespace ...