BZOJ 2005: [Noi2010]能量采集(莫比乌斯反演)
http://www.lydsy.com/JudgeOnline/problem.php?id=2005
题意:




#include<iostream>
#include<algorithm>
#include<cstring>
#include<cstdio>
#include<sstream>
#include<vector>
#include<stack>
#include<queue>
#include<cmath>
#include<map>
#include<set>
using namespace std;
typedef long long ll;
typedef pair<int,int> pll;
const int INF = 0x3f3f3f3f;
const int maxn = + ; bool check[maxn];
int prime[maxn];
int mu[maxn];
ll sum[maxn]; void Mobius()
{
memset(check, false, sizeof(check));
mu[] = ;
int tot = ;
for (int i = ; i <= maxn; i++)
{
if (!check[i])
{
prime[tot++] = i;
mu[i] = -;
}
for (int j = ; j < tot; j++)
{
if (i * prime[j] > maxn)
{
break;
}
check[i * prime[j]] = true;
if (i % prime[j] == )
{
mu[i * prime[j]] = ;
break;
}
else
{
mu[i * prime[j]] = -mu[i];
}
}
}
sum[]=;
for(int i=;i<maxn;i++)
sum[i]=sum[i-]+mu[i];
return ;
} ll solve(int n, int m)
{
if(n>m) swap(n,m);
ll tmp=;
for(int i=,last=;i<=n;i=last+)
{
last=min(n/(n/i),m/(m/i));
tmp+=(sum[last]-sum[i-])*(n/i)*(m/i);
}
return tmp;
} int n, m; int main()
{
//freopen("in.txt","r",stdin);
Mobius();
while(~scanf("%d%d",&m,&n))
{
ll ans=;
for(int i=;i<=min(n,m);i++) //枚举d
ans+=solve(n/i,m/i)*i; //这儿求gcd(x,y)=d的对数,但是如果/i的话就相当于计算gcd(x,y)=1的对数
//简化了计算
printf("%lld\n",*ans-(ll)n*m);
}
return ;
}
BZOJ 2005: [Noi2010]能量采集(莫比乌斯反演)的更多相关文章
- BZOJ 2005: [Noi2010]能量采集 [莫比乌斯反演]
题意:\((0,0)\)到\((x,y),\ x \le n, y \le m\)连线上的整点数\(*2-1\)的和 \((0,0)\)到\((a,b)\)的整点数就是\(gcd(a,b)\) 因为. ...
- BZOJ 2005 [Noi2010]能量采集 (数学+容斥 或 莫比乌斯反演)
2005: [Noi2010]能量采集 Time Limit: 10 Sec Memory Limit: 552 MBSubmit: 4493 Solved: 2695[Submit][Statu ...
- bzoj 2005: [Noi2010]能量采集 筛法||欧拉||莫比乌斯
2005: [Noi2010]能量采集 Time Limit: 10 Sec Memory Limit: 552 MB[Submit][Status][Discuss] Description 栋栋 ...
- BZOJ 2005: [Noi2010]能量采集
2005: [Noi2010]能量采集 Time Limit: 10 Sec Memory Limit: 552 MBSubmit: 3312 Solved: 1971[Submit][Statu ...
- BZOJ 2005: [Noi2010]能量采集( 数论 + 容斥原理 )
一个点(x, y)的能量损失为 (gcd(x, y) - 1) * 2 + 1 = gcd(x, y) * 2 - 1. 设g(i)为 gcd(x, y) = i ( 1 <= x <= ...
- luogu1447 [NOI2010]能量采集 莫比乌斯反演
link 冬令营考炸了,我这个菜鸡只好颓废数学题了 NOI2010能量采集 由题意可以写出式子: \(\sum_{i=1}^n\sum_{j=1}^m(2\gcd(i,j)-1)\) \(=2\sum ...
- bzoj 2005: [Noi2010]能量采集【莫比乌斯反演】
注意到k=gcd(x,y)-1,所以答案是 \[ 2*(\sum_{i=1}^{n}\sum_{i=1}^{m}gcd(i,j))-n*m \] 去掉前面的乘和后面的减,用莫比乌斯反演来推,设n< ...
- BZOJ2005: [Noi2010]能量采集 莫比乌斯反演的另一种方法——nlogn筛
分析:http://www.cnblogs.com/huhuuu/archive/2011/11/25/2263803.html 注:从这个题收获了两点 1,第一象限(x,y)到(0,0)的线段上整点 ...
- 【刷题】BZOJ 2005 [Noi2010]能量采集
Description 栋栋有一块长方形的地,他在地上种了一种能量植物,这种植物可以采集太阳光的能量.在这些植物采集能量后,栋栋再使用一个能量汇集机器把这些植物采集到的能量汇集到一起. 栋栋的植物种得 ...
- BZOJ2005:[NOI2010]能量采集(莫比乌斯反演,欧拉函数)
Description 栋栋有一块长方形的地,他在地上种了一种能量植物,这种植物可以采集太阳光的能量.在这些植物采集能量后,栋栋再使用一个能量汇集机器把这些植物采集到的能量汇集到一起. 栋栋的植物种得 ...
随机推荐
- sql语句查询条件的不同表达方式对查询性能的影响
今天操作数据库遇到一个问题 目标表RA_AD_DAILY_DATA的数据量大概有5千万左右,其中的BUSINESS_DATE字段为日期类型 我要查询8月20号导入的三条记录,刚开始用这种方式去查: S ...
- C# 验证码生成
后台: //生成验证码 public void CreateImage() { //获取4位验证码,并转成小写. ).ToLower(); //验证码赋值Cookie HttpCookie myCoo ...
- Add a try-catch with Mono Cecil
Adding exception handlers with Mono.Cecil is not difficult, it just requires you to know how excepti ...
- 【UOJ274】【清华集训2016】温暖会指引我们前行 LCT
[UOJ274][清华集训2016]温暖会指引我们前行 任务描述 虽然小R住的宿舍楼早已来了暖气,但是由于某些原因,宿舍楼中的某些窗户仍然开着(例如厕所的窗户),这就使得宿舍楼中有一些路上的温度还是很 ...
- 170509、文本编辑器编写的shell脚本在linux下无法执行的解决方法
今天碰到一个奇怪的问题,编写好的shell脚本再linux上执行一直提示找不到文件或目录,后来想想是文本编辑器的问题,记录下来!!! 1.查看当前文本格式 Notepad++界面中,在右下角有文件格式 ...
- 9.SQL存储过程实例详解
本文用3个题目,从建立数据库到创建存储过程,详细讲解数据库的功能. 题目1 学校图书馆借书信息管理系统建立三个表:学生信息表:student 字段名称 数据类型 说明 stuID char(10) 学 ...
- Oracle Schema Objects——View
Oracle Schema Objects Oracle视图View 普通视图.物化视图 视图(视图不包含数据,不是段对象,不占用空间,只是一个代码.) 作用: 简化SQL 为安全,不暴露表的名称 视 ...
- Monkey Tradition---LightOj1319(中国剩余定理模板)
题目链接:http://lightoj.com/volume_showproblem.php?problem=1319 题意:有 n 个猴子,n 棵树,树的高度为 L ,每个猴子刚开始的时候都在树的底 ...
- Jitamin
安装环境要求 PHP 5.6或更高(推荐使用PHP7) 数据库, 推荐使用MySQL 或 PostgreSQL. 当然SQLite也可以运行. Composer 安装手册 一. 克隆代码 假设我们把j ...
- YTD易出现断层问题,请注意!
declare @table table( company_id int ,--公司编号 quarter_num ),--季度 disti ),--分销商 num int --数量 ) insert ...