OPENCV(6) —— 角点检测
图像特征的类型通常指边界、角点(兴趣点)、斑点(兴趣区域)。角点就是图像的一个局部特征,应用广泛。harris角点检测是一种直接基于灰度图像的角点提取算法,稳定性高,尤其对L型角点检测精度高,但由于采用了高斯滤波,运算速度相对较慢,角点信息有丢失和位置偏移的现象,而且角点提取有聚簇现象。
- Use the FeatureDetector interface in order to find interest points. Specifically:
- Use the SurfFeatureDetector and its function detect to perform the detection process
- Use the function drawKeypoints to draw the detected keypoints
#include "stdafx.h" #include <stdio.h>
#include <iostream>
#include "opencv2/core/core.hpp"
#include "opencv2/features2d/features2d.hpp"
#include "opencv2/highgui/highgui.hpp" using namespace cv; void readme(); /** @function main */
int main( int argc, char** argv )
{
/*
if( argc != 3 )
{ readme(); return -1; } */ Mat img_1 = imread( "zhang.jpg", CV_LOAD_IMAGE_GRAYSCALE );
Mat img_2 = imread( "guo.jpg", CV_LOAD_IMAGE_GRAYSCALE ); if( !img_1.data || !img_2.data )
{ std::cout<< " --(!) Error reading images " << std::endl; return -1; } //-- Step 1: Detect the keypoints using SURF Detector
int minHessian = 400; SurfFeatureDetector detector( minHessian ); std::vector<KeyPoint> keypoints_1, keypoints_2; detector.detect( img_1, keypoints_1 ); // 特征点向量
detector.detect( img_2, keypoints_2 ); //-- Draw keypoints
Mat img_keypoints_1; Mat img_keypoints_2; drawKeypoints( img_1, keypoints_1, img_keypoints_1, Scalar::all(-1), DrawMatchesFlags::DEFAULT );
drawKeypoints( img_2, keypoints_2, img_keypoints_2, Scalar::all(-1), DrawMatchesFlags::DEFAULT ); //-- Show detected (drawn) keypoints
imshow("Keypoints 1", img_keypoints_1 );
imshow("Keypoints 2", img_keypoints_2 ); waitKey(0); return 0;
} /** @function readme */
void readme()
{ std::cout << " Usage: ./SURF_detector <img1> <img2>" << std::endl; }
检测keypoints点的检测器是SURF,获取描述子也是用到SURF来描述,而用到的匹配器是FlannBased,最后通过findHomography寻找单映射矩阵,perspectiveTransform获得最终的目标
findHomography 函数是求两幅图像的单应性矩阵,它是一个3*3的矩阵
#include "stdafx.h"
#include <stdio.h>
#include <iostream>
#include "opencv2/core/core.hpp"
#include "opencv2/features2d/features2d.hpp"
#include "opencv2/highgui/highgui.hpp"
#include <opencv2\calib3d\calib3d.hpp> using namespace cv; void readme(); int main( int argc, char** argv )
{ /*
if( argc != 3 )
{ return -1; }*/ Mat img_1 = imread( "test1.jpg", CV_LOAD_IMAGE_GRAYSCALE );
Mat img_2 = imread( "test2.jpg", CV_LOAD_IMAGE_GRAYSCALE ); if( !img_1.data || !img_2.data )
{ return -1; } //-- Step 1: Detect the keypoints using SURF Detector
int minHessian = 400; SurfFeatureDetector detector( minHessian ); std::vector<KeyPoint> keypoints_1, keypoints_2; detector.detect( img_1, keypoints_1 );
detector.detect( img_2, keypoints_2 ); // 角点集合 —— 数目确定 //-- Step 2: Calculate descriptors (feature vectors)
SurfDescriptorExtractor extractor; // 角点描述子 Mat descriptors_1, descriptors_2; extractor.compute( img_1, keypoints_1, descriptors_1 );
extractor.compute( img_2, keypoints_2, descriptors_2 ); /*
//-- Step 3: Matching descriptor vectors with a brute force matcher
BruteForceMatcher< L2<float> > matcher;
std::vector< DMatch > matches;
matcher.match( descriptors_1, descriptors_2, matches ); //-- Draw matches
Mat img_matches;
drawMatches( img_1, keypoints_1, img_2, keypoints_2, matches, img_matches ); //-- Show detected matches
imshow("Matches", img_matches );
*/ //-- Step 3: Matching descriptor vectors using FLANN matcher
FlannBasedMatcher matcher;
std::vector< DMatch > matches;
matcher.match( descriptors_1, descriptors_2, matches ); double max_dist = 0; double min_dist = 100; //-- Quick calculation of max and min distances between keypoints
for( int i = 0; i < descriptors_1.rows; i++ )
{
double dist = matches[i].distance;
if( dist < min_dist ) min_dist = dist;
if( dist > max_dist ) max_dist = dist;
} printf("-- Max dist : %f \n", max_dist );
printf("-- Min dist : %f \n", min_dist ); //-- Draw only "good" matches (i.e. whose distance is less than 2*min_dist ) —— 阈值
//-- PS.- radiusMatch can also be used here.
std::vector< DMatch > good_matches; for( int i = 0; i < descriptors_1.rows; i++ )
{
if( matches[i].distance < 2*min_dist )
{
good_matches.push_back( matches[i]); // 在匹配源头限制
}
} //-- Draw only "good" matches
Mat img_matches;
drawMatches( img_1, keypoints_1, img_2, keypoints_2,
good_matches, img_matches, Scalar::all(-1), Scalar::all(-1),
vector<char>(), DrawMatchesFlags::NOT_DRAW_SINGLE_POINTS ); //-- Show detected matches
imshow( "Good Matches", img_matches ); //-- Localize the object from img_1 in img_2
std::vector<Point2f> obj;
std::vector<Point2f> scene; for( int i = 0; i < good_matches.size(); i++ )
{
//-- Get the keypoints from the good matches
obj.push_back( keypoints_1[ good_matches[i].queryIdx ].pt );
scene.push_back( keypoints_2[ good_matches[i].trainIdx ].pt );
} Mat H = findHomography( obj, scene, CV_RANSAC ); // findHomography 函数是求两幅图像的单应性矩阵,它是一个3*3的矩阵 //-- Get the corners from the image_1 ( the object to be "detected" )
Point2f obj_corners[4] = { cvPoint(0,0), cvPoint( img_1.cols, 0 ), cvPoint( img_1.cols, img_1.rows ), cvPoint( 0, img_1.rows ) };
Point scene_corners[4]; //-- Map these corners in the scene ( image_2)
for( int i = 0; i < 4; i++ )
{
double x = obj_corners[i].x;
double y = obj_corners[i].y; double Z = 1./( H.at<double>(2,0)*x + H.at<double>(2,1)*y + H.at<double>(2,2) );
double X = ( H.at<double>(0,0)*x + H.at<double>(0,1)*y + H.at<double>(0,2) )*Z;
double Y = ( H.at<double>(1,0)*x + H.at<double>(1,1)*y + H.at<double>(1,2) )*Z;
scene_corners[i] = cvPoint( cvRound(X) + img_1.cols, cvRound(Y) );
} //-- Draw lines between the corners (the mapped object in the scene - image_2 )
line( img_matches, scene_corners[0], scene_corners[1], Scalar(0, 255, 0), 2 );
line( img_matches, scene_corners[1], scene_corners[2], Scalar( 0, 255, 0), 2 );
line( img_matches, scene_corners[2], scene_corners[3], Scalar( 0, 255, 0), 2 );
line( img_matches, scene_corners[3], scene_corners[0], Scalar( 0, 255, 0), 2 ); //-- Show detected matches
imshow( "Good Matches & Object detection", img_matches ); waitKey(0); return 0;
} /**
* @function readme
*/
void readme()
{ std::cout << " Usage: ./SURF_descriptor <img1> <img2>" << std::endl; }
利用findHomography函数利用匹配的关键点找出相应的变换,再利用perspectiveTransform函数映射点群。
转自:http://blog.csdn.net/yang_xian521/article/details/6901762
OPENCV(6) —— 角点检测的更多相关文章
- 【OpenCV】角点检测:Harris角点及Shi-Tomasi角点检测
角点 特征检测与匹配是Computer Vision 应用总重要的一部分,这需要寻找图像之间的特征建立对应关系.点,也就是图像中的特殊位置,是很常用的一类特征,点的局部特征也可以叫做“关键特征点”(k ...
- OpenCV Shi-Tomasi角点检测子
Shi-Tomasi角点检测子 目标 在这个教程中我们将涉及: 使用函数 goodFeaturesToTrack 来调用Shi-Tomasi方法检测角点. 理论 代码 这个教程的代码如下所示.源代码还 ...
- OpenCV Harris 角点检测子
Harris 角点检测子 目标 本教程中我们将涉及: 有哪些特征?它们有什么用? 使用函数 cornerHarris 通过 Harris-Stephens方法检测角点. 理论 有哪些特征? 在计算机视 ...
- Opencv Shi-Tomasi角点检测
#include <iostream>#include <opencv2/opencv.hpp> using namespace std;using namespace cv; ...
- Opencv Harris角点检测
#include <iostream>#include <opencv2/opencv.hpp> using namespace std;using namespace cv; ...
- OpenCV 之 角点检测
角点 (corners) 的定义有两个版本:一是 两条边缘的交点,二是 邻域内具有两个主方向的特征点. 一般而言,角点是边缘曲线上曲率为极大值的点,或者 图像亮度发生剧烈变化的点.例如,从人眼角度来看 ...
- opencv::自定义角点检测
#include <opencv2/opencv.hpp> #include <iostream> #include <math.h> using namespac ...
- opencv笔记6:角点检测
time:2015年10月09日 星期五 23时11分58秒 # opencv笔记6:角点检测 update:从角点检测,学习图像的特征,这是后续图像跟踪.图像匹配的基础. 角点检测是什么鬼?前面一篇 ...
- opencv: 角点检测源码分析;
以下6个函数是opencv有关角点检测的函数 ConerHarris, cornoerMinEigenVal,CornorEigenValsAndVecs, preConerDetect, coner ...
随机推荐
- 作为一个程序员怎么通过android开发赚钱
上面是一个程序员通过Android开发每天的收入,信则有! 自己学安卓差不多,有一年了.我本来是从事javaweb开发的,可能学习安卓上手会快点.其实安卓没有那难 .首先开发安卓程序,要有一个,开 ...
- 教你怎样做个有“钱”途的測试project师
百度百科说測试project师这一职业的待遇,薪酬上升空间很大.但測试project师也有自己的烦恼,比方在程序出错后,将问题反馈给程序猿,然后程序猿给的答复是:"oh,howisthatp ...
- 51nod-1273: 旅行计划
[传送门:51nod-1273] 简要题意: 给出一棵树,点数为n,现在你有一个旅行计划,从k城市出发,每天前往一个没去过的城市,并且旅途中经过的没有去过的城市尽可能的多(如果有2条路线,经过的没有去 ...
- zzulioj--1822--水水更健康(水题)
1822: 水水更健康 Time Limit: 1 Sec Memory Limit: 128 MB Submit: 49 Solved: 19 SubmitStatusWeb Board Des ...
- Spring Boot: Tuning your Undertow application for throughput--转
原文地址:https://jmnarloch.wordpress.com/2016/04/26/spring-boot-tuning-your-undertow-application-for-thr ...
- jquery判断页面元素是否存在
在传统的Javascript里,当我们对某个页面元素进行某种操作前,最好先判断这个元素是否存在.原因是对一个不存在的元素进行操作是不允许的. 例如: document.getElementById(& ...
- Lua,github,nginx
个人觉得这几种工具都是大学里,至少是前几年未曾出现于课本中或者图书馆中的.而如今确实某些公司赫然出现在招聘需求中的东西. 什么是Lua,为什么要用Lua——做手机游戏而被推广的.Lua原来早在93年就 ...
- 我所理解的monad(1):半群(semigroup)与幺半群(monoid)
google到数学里定义的群(group): G为非空集合,如果在G上定义的二元运算 *,满足 (1)封闭性(Closure):对于任意a,b∈G,有a*b∈G (2)结合律(Associativit ...
- 将double数据保留两位小数
private double formatDouble(double number) { DecimalFormat df = new DecimalFormat("#.00"); ...
- [LNOI2014]LCA 树链剖分 离线 前缀和 思维题
题目描述:给出一个n个节点的有根树(编号为0到n-1,根节点为0).一个点的深度定义为这个节点到根的距离+1. 设dep[i]表示点i的深度,LCA(i,j)表示i与j的最近公共祖先. 有q次询问,每 ...