本文为博主原创文章,欢迎转载,请注明出处 www.cnblogs.com/yangyaojia

The Balance
题目大意 
你有一个天平(天平左右两边都可以放砝码)与重量为a,b(1<=a,b<=10000)的两种砝码。让你求出一种方案称出重为c(1<=c<=50000)的物品,如有多种方案,请输出两种砝码需要数量的总和最小的方案。
输入
有若干行,每行三个数,a,b,c。
结束时用0 0 0表示。
输出
若干行,每行两个数,表示每个询问中a的数量与b的数量
如果无解输出 no solution
分析
题目就是求方程 ax+by=c,求出一组解很容易,就用扩展欧几里德求,可是要求出使|x|+|y|最小的解就得想一想。如果是枚举,肯定超时。
有没有什么好的方法求出我们要的x,y? 我们假设a>b ,x0,y0为求得的解,x,y为目标解。
根据扩欧的性质,我们知道
x=x0 + b/gcd*t
y=y0 — a/gcd*t
我们可以得到这样的函数 |x|+|y|=|x0 + b/gcd*t|+|y0 — a/gcd*t| 因为我们知道a>b,所以x0加得比y0减得比慢。因此y0占主导地位,
故当y0 — a/gcd*t=0时|x|+|y|最小。我们可以枚举t±5的解,寻找最小就行。
#include <cstdio>
#include <iostream>
#include <cmath>
#include <queue>
#include <algorithm>
#include <cstring>
#include <climits>
#define MAXN 10000+10
using namespace std;
int e_gcd(int a,int b,int& x,int& y)
{
if(!b)
{
x=;
y=;
return a;
}
int ans=e_gcd(b,a%b,x,y);
int tmp=x;
x=y;
y=tmp-a/b*y;
return ans;
}
int a,b,c,x,y,gcd,t,minn=~(<<),ansx=,ansy=;
int main()
{
while(scanf("%d%d%d",&a,&b,&c)&&!(a==&&b==&&c==))
{
int flag=;
if(a<b)
{
flag=;
swap(a,b);
}
gcd=e_gcd(a,b,x,y);
minn=~(<<),ansx=,ansy=;
if(c%gcd) {printf("no solution\n");continue;}
x*=(c/gcd);y*=(c/gcd);
t=(y*gcd)/a;
for(int i=t-;i<=t+;i++)
{
if(abs(x+b/gcd*i)+abs(y-a/gcd*i)<minn)
{
minn=abs(x+b/gcd*i)+abs(y-a/gcd*i);
ansx=abs(x+b/gcd*i),ansy=abs(y-a/gcd*i);
}
}
if(flag==) printf("%d %d\n",ansx,ansy);
else printf("%d %d\n",ansy,ansx);
}
return ;
}

AC通道 :http://poj.org/problem?id=2142

POJ2142 The Balance (扩展欧几里德)的更多相关文章

  1. POJ-2142 The Balance 扩展欧几里德(+绝对值和最小化)

    题目链接:https://cn.vjudge.net/problem/POJ-2142 题意 自己看题吧,懒得解释 思路 第一部分就是扩展欧几里德 接下来是根据 $ x=x_0+kb', y=y_0- ...

  2. poj2142 The Balance 扩展欧几里德的应用 稍微还是有点难度的

    题目意思一开始没理解,原来是 给你重为a,b,的砝码 求测出 重量为d的砝码,a,b砝码可以无限量使用 开始时我列出来三个方程 : a*x+b*y=d; a*x-b*y=d; b*y-ax=d; 傻眼 ...

  3. poj2142-The Balance(扩展欧几里德算法)

    一,题意: 有两个类型的砝码,质量分别为a,b;现在要求称出质量为d的物品, 要用多少a砝码(x)和多少b砝码(y),使得(x+y)最小.(注意:砝码位置有左右之分). 二,思路: 1,砝码有左右位置 ...

  4. POJ 2142 The Balance【扩展欧几里德】

    题意:有两种类型的砝码,每种的砝码质量a和b给你,现在要求称出质量为c的物品,要求a的数量x和b的数量y最小,以及x+y的值最小. 用扩展欧几里德求ax+by=c,求出ax+by=1的一组通解,求出当 ...

  5. (扩展欧几里德算法)zzuoj 10402: C.机器人

    10402: C.机器人 Description Dr. Kong 设计的机器人卡尔非常活泼,既能原地蹦,又能跳远.由于受软硬件设计所限,机器人卡尔只能定点跳远.若机器人站在(X,Y)位置,它可以原地 ...

  6. [BZOJ1407][NOI2002]Savage(扩展欧几里德)

    题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=1407 分析: m,n范围都不大,所以可以考虑枚举 先枚举m,然后判定某个m行不行 某个 ...

  7. 欧几里德与扩展欧几里德算法 Extended Euclidean algorithm

    欧几里德算法 欧几里德算法又称辗转相除法,用于计算两个整数a,b的最大公约数. 基本算法:设a=qb+r,其中a,b,q,r都是整数,则gcd(a,b)=gcd(b,r),即gcd(a,b)=gcd( ...

  8. 51nod 1352 扩展欧几里德

    给出N个固定集合{1,N},{2,N-1},{3,N-2},...,{N-1,2},{N,1}.求出有多少个集合满足:第一个元素是A的倍数且第二个元素是B的倍数. 提示: 对于第二组测试数据,集合分别 ...

  9. CF 7C. Line(扩展欧几里德)

    题目链接 AC了.经典问题,a*x+b*y+c = 0整数点,有些忘记了扩展欧几里德,复习一下. #include <cstdio> #include <iostream> # ...

随机推荐

  1. 0111MySQL优化的奇技淫巧之STRAIGHT_JOIN

    转自博客http://huoding.com/2013/06/04/261 问题 通过「SHOW FULL PROCESSLIST」语句很容易就能查到问题SQL,如下: SELECT post.* F ...

  2. 60款开源云应用【Part 3】(60 Open Source Apps You Can Use in the Cloud)

    60款开源云应用[Part 3](60 Open Source Apps You Can Use in the Cloud) 本篇翻译自http://www.datamation.com/open-s ...

  3. 《C++编程思想》第四章 初始化与清除(原书代码+习题+解答)

    相关代码: 1. #include <stdio.h> class tree { int height; public: tree(int initialHeight); ~tree(); ...

  4. java中的NIO

    使用传统的输入输出流,当读取输入流中的数据如果没有没有读到有效的数据时,程序将在此处阻塞该线程的执行(使用InputStream的read方法从流中读取数据时,如果数据源中没有数据,它也会阻塞该线程) ...

  5. nyoj--68--三点顺序(数学)

    三点顺序 时间限制:1000 ms  |  内存限制:65535 KB 难度:3 描述 现在给你不共线的三个点A,B,C的坐标,它们一定能组成一个三角形,现在让你判断A,B,C是顺时针给出的还是逆时针 ...

  6. js 预加载图片image()函数

    创建一个Image对象:var a=new Image();    定义Image对象的src: a.src=”xxx.gif”;    这样做就相当于给浏览器缓存了一张图片. 图像对象: 建立图像对 ...

  7. linux下关于IPC(进程间通信)

    linux下进程间通信的主要几种方式 管道(Pipe)及有名管道(named pipe):管道可用于具有亲缘关系进程间的通信,有名管道克服了管道没有名字的限制,因此,除具有管道所具有的功能外,它还允许 ...

  8. 【转】解析<button>和<input type="button"> 的区别

    一.定义和用法 <button> 标签定义的是一个按钮. 在 button 元素内部,可以放置文本或图像.这是<button>与使用 input 元素创建的按钮的不同之处. 二 ...

  9. c# byte转化为string

    byte[] bt = new byte[] { 10, 11, 33, 44, 2 }; string str=string.Join(",",bt.Select(t=>t ...

  10. JQuery事件绑定,bind与on区别

    jquery事件绑定bind:向匹配元素添加一个或多个事件处理器 $(selector).bind("click",data,function); live:向当前或未来的匹配元素 ...