这里的先后关系可以看成节点和父亲的关系

在树里面,没有父亲肯定就没有节点

所以我们可以先修的看作父亲,后修的看作节点

所以这是一颗树

这题和上一道题比较相似

都是求树上最大点权和问题

但这道题是多叉树

这里有多个根,那就加一个编号为0的根,价值为0, 同时m要+1(因为这个虚拟的 根一定要取)

解法两种

(1)转二叉树

左儿子右兄弟可以转二叉树

这篇博客讲得很好

https://blog.csdn.net/c20190102/article/details/69946551

注意这里转后有“后遗症”

对于当前节点,左节点是原图中的儿子,右节点是原图中的兄弟

所以分三种情况

(1)只选儿子, 此时

(2) 选兄弟和儿子,此时

(3)只选兄弟 此时 

#include<cstdio>
#include<algorithm>
#include<cstring>
#define REP(i, a, b) for(int i = (a); i < (b); i++)
using namespace std; const int MAXN = 312;
struct tree
{
int l, r, d, c;
tree() {l = r = -1; c = 0; }
}a[MAXN];
int f[MAXN][MAXN], n, m; int dfs(int i, int j)
{
if(i < 0) return 0;
int& ans = f[i][j];
if(ans != -1) return ans;
REP(k, 0, j) //k = j - 1时是只选儿子,其他时候儿子兄弟都选
ans = max(ans, dfs(a[i].l, k) + dfs(a[i].r, j-k-1) + a[i].c);
ans = max(ans, dfs(a[i].r, j)); //只选兄弟
return ans;
} int main()
{
scanf("%d%d", &n, &m);
REP(i, 1, n + 1)
{
int x;
scanf("%d%d", &x, &a[i].c);
if(a[x].l == -1) a[x].l = i;
else a[a[x].d].r = i;
a[x].d = i;
}
memset(f, -1, sizeof(f));
REP(i, 0, n + 1) f[i][0] = 0;
printf("%d\n", dfs(0, m + 1));
return 0;
}

(2)树上背包

在树上做多重背包

可以设f[i][j]为以i为根的字树取j个节点(包括i)的最大权值

那么可以初始化为

然后枚举左右节点的个数取max

#include<cstdio>
#include<vector>
#include<algorithm>
#define REP(i, a, b) for(int i = (a); i < (b); i++)
using namespace std; const int MAXN = 212;
int f[MAXN][MAXN], cnt[MAXN], n, m, x;
vector<int> g[MAXN]; void dfs(int u)
{
cnt[u] = 1;
REP(i, 0, g[u].size())
{
int v = g[u][i];
dfs(v);
cnt[u] += cnt[v];
for(int j = cnt[u]; j >= 1; j--)
for(int k = 0; k <= min(j - 1, cnt[v]); k++)
f[u][j] = max(f[u][j], f[u][j-k] + f[v][k]);
}
} int main()
{
scanf("%d%d", &n, &m);
REP(i, 1, n + 1)
{
scanf("%d%d", &x, &f[i][1]);
g[x].push_back(i);
}
dfs(0);
printf("%d\n", f[0][m+1]);
return 0;
}

洛谷 P2014 选课 && caioj 1108 树形动态规划(TreeDP)3:选课的更多相关文章

  1. 洛谷 P2014 选课(树形背包)

    洛谷 P2014 选课(树形背包) 思路 题面:洛谷 P2014 如题这种有依赖性的任务可以用一棵树表示,因为一个儿子要访问到就必须先访问到父亲.然后,本来本题所有树是森林(没有共同祖先),但是题中的 ...

  2. 树形DP 洛谷P2014 选课

    洛谷P2014 选课 题目描述 在大学里每个学生,为了达到一定的学分,必须从很多课程里选择一些课程来学习,在课程里有些课程必须在某些课程之前学习,如高等数学总是在其它课程之前学习.现在有N门功课,每门 ...

  3. 【BZOJ2830/洛谷3830】随机树(动态规划)

    [BZOJ2830/洛谷3830]随机树(动态规划) 题面 洛谷 题解 先考虑第一问. 第一问的答案显然就是所有情况下所有点的深度的平均数. 考虑新加入的两个点,一定会删去某个叶子,然后新加入两个深度 ...

  4. 洛谷 P1273 有线电视网(树形背包)

    洛谷 P1273 有线电视网(树形背包) 干透一道题 题面:洛谷 P1273 本质就是个背包.这道题dp有点奇怪,最终答案并不是dp值,而是最后遍历寻找那个合法且最优的\(i\)作为答案.dp值存的是 ...

  5. 洛谷 P3177 [HAOI2015]树上染色 树形DP

    洛谷 P3177 [HAOI2015]树上染色 树形DP 题目描述 有一棵点数为 \(n\) 的树,树边有边权.给你一个在 \(0 \sim n\)之内的正整数 \(k\) ,你要在这棵树中选择 \( ...

  6. 2021.08.05 P1738 洛谷的文件夹(树形结构)

    2021.08.05 P1738 洛谷的文件夹(树形结构) P1738 洛谷的文件夹 - 洛谷 | 计算机科学教育新生态 (luogu.com.cn) 重点: 1.树!! 题意: 给出n个网页路径,求 ...

  7. 【洛谷4769】[NOI2018] 冒泡排序(动态规划_组合数学)

    题目: 洛谷 4769 博客页面左下角的嘴嘴瓜封神之战中的题目 分析: 一个排列交换次数为 \(\frac{1}{2}\sum_{i=1}^{n}|i-p_i|\) 的充要条件是这个排列不存在长度为 ...

  8. 洛谷P3515 [POI2011]Lightning Conductor(动态规划,决策单调性,单调队列)

    洛谷题目传送门 疯狂%%%几个月前就秒了此题的Tyher巨佬 借着这题总结一下决策单调性优化DP吧.蒟蒻觉得用数形结合的思想能够轻松地理解它. 首先,题目要我们求所有的\(p_i\),那么把式子变一下 ...

  9. 洛谷P1973 [NOI2011]Noi嘉年华(动态规划,决策单调性)

    洛谷题目传送门 DP题怕是都要大大的脑洞...... 首先,时间那么大没用,直接离散化. 第一问还好.根据题意容易发现,当一堆活动的时间有大量重叠的时候,更好的办法是把它们全部安排到一边去.那么我们转 ...

随机推荐

  1. SpringMVC学习(二)——SpringMVC架构及组件(及其运行原理)-转载

    相信大家通过前文的学习,已经对SpringMVC这个框架多少有些理解了.还记得上一篇文章中SpringMVC的处理流程吗?  这个图大致描述了SpringMVC的整个处理流程,这个流程图还是相对来说比 ...

  2. HDU 3342 Legal or Not【拓扑排序】

    题意:给出n,m,人的编号为 0到n-1,再给出m个关系,问能不能够进行拓扑排序 #include<iostream> #include<cstdio> #include< ...

  3. input[type="file"]的图片预览

    在项目中遇到用input标签file类型的文件上传,想实在上传之前进行图片的预览功能:之前的做的一个解决方案是文件先上传上去然后返回地址再显示在页面上,这样就不太好,因为用户基本信息可能并没有保存,但 ...

  4. js中获取数据类型

    ES5中,js中数据类型:number.string.boolean.undefined.null.object js中获取数据类型常用的四种方式 实例: var a = 123, b = true, ...

  5. POJ-3660 Cow Contest Floyd传递闭包的应用

    题目链接:https://cn.vjudge.net/problem/POJ-3660 题意 有n头牛,每头牛都有一定的能力值,能力值高的牛一定可以打败能力值低的牛 现给出几头牛的能力值相对高低 问在 ...

  6. [USACO10FEB]吃巧克力Chocolate Eating

    题目:洛谷P2985. 题目大意:有n块巧克力要吃d天,并且只能按顺序吃.一块巧克力有一个开心值,吃了就能增加开心值.一个人初始开心值为0,且每天早上开心值变为原来的一半.问如何吃巧克力才能使开心值最 ...

  7. P1017 进制转换 (负进制转换)

    和平常的转化差不多 加多一步 如果余数 < 0, 那么余数减去除数(此时除数是负),商数加1 #include<cstdio> #define _for(i, a, b) for(i ...

  8. Lorenzini:Laplacian与图上的黎曼-罗赫定理

    前两天去听了一下搞代数几何的Dino Lorenzini在交大的两场讲座(“On Laplacian Of Graphs and Generalization”,“Riemann-Roch Theor ...

  9. ie11 .pac代理脚本无法使用的问题

    参考: http://blogs.msdn.com/b/ieinternals/archive/2013/10/11/web-proxy-configuration-and-ie11-changes. ...

  10. [MySQL]快速解决"is marked as crashed and should be repaired"故障[转]

    Table '.\Tablename\posts' is marked as crashed and should be repaired 提示说论坛的帖子表posts被标记有问题,需要修复.我记得以 ...