Python有了asyncio和aiohttp在爬虫这类型IO任务中多线程/多进程还有存在的必要吗?
最近正在学习Python中的异步编程,看了一些博客后做了一些小测验:对比asyncio+aiohttp的爬虫和asyncio+aiohttp+concurrent.futures(线程池/进程池)在效率中的差异,注释:在爬虫中我几乎没有使用任何计算性任务,为了探测异步的性能,全部都只是做了网络IO请求,就是说aiohttp把网页get完就程序就done了。
结果发现前者的效率比后者还要高。我询问了另外一位博主,(提供代码的博主没回我信息),他说使用concurrent.futures的话因为我全部都是IO任务,如果把这些IO任务分散到线程池/进程池,反而多线程/多进程之间的切换开销还会降低爬虫的效率。我想了想的确如此。
那么我的问题是:仅仅在爬取网页的过程中,就是request.get部分,多线程肯定是没有存在的必要了,因为GIL这个大坑,进程池可能好点,但是性能还是不如异步爬虫,而且更加浪费资源。既然这样,是不是以后在爬虫的爬取网页阶段我们完全都可以用兴起的asyncio+aiohttp代替。(以及其他IO任务比如数据库/文件读写)
当然在数据处理阶段还是要采用多进程,但是我觉得多线程是彻底没用了,原本它相比多进程的优势在于IO型任务,现看来在它的优势完全被异步取代了。(当然问题建立在不考虑兼容2.x)
注:还有一个额外的问题就是,看到一些博客说requests库不支持异步编程是什么意思,为了充分发回异步的优势应该使用aiohttp,我没有看过requests的源代码,但是一些结果显示aiohttp的性能确实更好,各位网友能解释一下吗?
代码
asyncio+aiohttp
import aiohttp
async def fetch_async(a):
async with aiohttp.request('GET', URL.format(a)) as r:
data = await r.json()
return data['args']['a']
start = time.time()
event_loop = asyncio.get_event_loop()
tasks = [fetch_async(num) for num in NUMBERS]
results = event_loop.run_until_complete(asyncio.gather(*tasks))
for num, result in zip(NUMBERS, results):
print('fetch({}) = {}'.format(num, result))
asyncio+aiohttp+线程池比上面要慢1秒
async def fetch_async(a):
async with aiohttp.request('GET', URL.format(a)) as r:
data = await r.json()
return a, data['args']['a']
def sub_loop(numbers):
loop = asyncio.new_event_loop()
asyncio.set_event_loop(loop)
tasks = [fetch_async(num) for num in numbers]
results = loop.run_until_complete(asyncio.gather(*tasks))
for num, result in results:
print('fetch({}) = {}'.format(num, result))
async def run(executor, numbers):
await asyncio.get_event_loop().run_in_executor(executor, sub_loop, numbers)
def chunks(l, size):
n = math.ceil(len(l) / size)
for i in range(0, len(l), n):
yield l[i:i + n]
event_loop = asyncio.get_event_loop()
tasks = [run(executor, chunked) for chunked in chunks(NUMBERS, 3)]
results = event_loop.run_until_complete(asyncio.gather(*tasks))
print('Use asyncio+aiohttp+ThreadPoolExecutor cost: {}'.format(time.time() - start))
传统的requests + ThreadPoolExecutor比上面慢了3倍
import time
import requests
from concurrent.futures import ThreadPoolExecutor
NUMBERS = range(12)
URL = 'http://httpbin.org/get?a={}'
def fetch(a):
r = requests.get(URL.format(a))
return r.json()['args']['a']
start = time.time()
with ThreadPoolExecutor(max_workers=3) as executor:
for num, result in zip(NUMBERS, executor.map(fetch, NUMBERS)):
print('fetch({}) = {}'.format(num, result))
print('Use requests+ThreadPoolExecutor cost: {}'.format(time.time() - start))
补充
以上问题建立在CPython,至于我喜欢用多线程,不喜欢协程风格这类型的回答显然不属于本题讨论范畴。我主要想请教的是:
如果Python拿不下GIL,我认为未来理想的模型应该是多进程 + 协程(asyncio+aiohttp)。uvloop和sanic以及500lines一个爬虫项目已经开始这么干了。不讨论兼容型问题,上面的看法是否正确,有一些什么场景协程无法取代多线程。
异步有很多方案,twisted, tornado等都有自己的解决方案,问题建立在asyncio+aiohttp的协程异步。
还有一个问题也想向各位网友请教一下
Python有了asyncio和aiohttp在爬虫这类型IO任务中多线程/多进程还有存在的必要吗? >> node.js
这个答案描述的挺清楚的:
http://www.goodpm.net/postreply/node.js/1010000007987098/Python有了asyncio和aiohttp在爬虫这类型IO任务中多线程多进程还有存在的必要吗.html
Python有了asyncio和aiohttp在爬虫这类型IO任务中多线程/多进程还有存在的必要吗?的更多相关文章
- python链家网高并发异步爬虫asyncio+aiohttp+aiomysql异步存入数据
python链家网二手房异步IO爬虫,使用asyncio.aiohttp和aiomysql 很多小伙伴初学python时都会学习到爬虫,刚入门时会使用requests.urllib这些同步的库进行单线 ...
- 异步:asyncio和aiohttp的一些应用(1)
1. asyncio 1.1asyncio/await 用法 async/await 是 python3.5中新加入的特性, 将异步从原来的yield 写法中解放出来,变得更加直观. 在3.5之前,如 ...
- python链家网高并发异步爬虫and异步存入数据
python链家网二手房异步IO爬虫,使用asyncio.aiohttp和aiomysql 很多小伙伴初学python时都会学习到爬虫,刚入门时会使用requests.urllib这些同步的库进行单线 ...
- 一个使用 asyncio 开发的网络爬虫(译文)
原文地址:https://www.aosabook.org/en/500L/a-web-crawler-with-asyncio-coroutines.html 作者简介 A. Jesse Jiryu ...
- 使用Python自动填写问卷星(pyppeteer反爬虫版)
写此文的目的是为了方便寒假自己忘记填问卷星 一开始的想法和去年一样,去年就写过一版,想着今年不过就是改改数据,换换id而已,另外没想到的事情发生了... 满怀信心的写完代码 from selenium ...
- PHP, Python, Node.js 哪个比较适合写爬虫?
PHP, Python, Node.js 哪个比较适合写爬虫? 1.对页面的解析能力2.对数据库的操作能力(mysql)3.爬取效率4.代码量推荐语言时说明所需类库或者框架,谢谢.比如:python+ ...
- python scrapy 入门,10分钟完成一个爬虫
在TensorFlow热起来之前,很多人学习python的原因是因为想写爬虫.的确,有着丰富第三方库的python很适合干这种工作. Scrapy是一个易学易用的爬虫框架,尽管因为互联网多变的复杂性仍 ...
- Python十分适合用来开发网页爬虫
Python十分适合用来开发网页爬虫,理由如下:1.抓取网页自身的接口比较与其他静态编程语言,如java,c#,c++,python抓取网页文档的接口更简练:比较其他动态脚本语言,如perl,shel ...
- 【译】深入理解python3.4中Asyncio库与Node.js的异步IO机制
转载自http://xidui.github.io/2015/10/29/%E6%B7%B1%E5%85%A5%E7%90%86%E8%A7%A3python3-4-Asyncio%E5%BA%93% ...
随机推荐
- 一分钟了解Android横竖屏 mdpi hdpi xhdpi xxhdpi xxxhdpi
DPI:每英寸像素数 简单的屏幕分辨率计算方法: DisplayMetrics metrics = this.getResources().getDisplayMetrics(); float den ...
- ffmpeg在android上输出滑屏问题处理
ffmpeg部分机器上有花屏的问题 原代码例如以下: while(av_read_frame(formatCtx, &packet)>=0 && !_stop & ...
- vue项目中设置全局引入scss,使每个组件都可以使用变量
在Vue项目中使用scss,如果写了一套完整的有变量的scss文件.那么就需要全局引入,这样在每个组件中使用. 可以在mian.js全局引入,下面是使用方法. 1: 安装node-sass.sass- ...
- sas与mysql连接方法
2012年8月11日 sas 9.1.3 版本 与mysql 连接 测试,可以与数据库连接1 通过odbc 直接连通 pass through connect to odbc create tabl ...
- Linux 清空缓存
sync echo 1 > /proc/sys/vm/drop_caches echo 2 > /proc/sys/vm/drop_caches echo 3 > /proc/sys ...
- SpringCloud学习笔记(17)----Spring Cloud Netflix之服务网关Zuul的使用
1. 什么时候Zuul? Zuul是一个基于jvm路由和服务端的负载均衡器,在云平台上提供动态路由,监控,弹性,安全等边缘服务的框架. 路由功能:相当于nginx的反向代理 比如: / 可能需要映射到 ...
- SQL Server查询死锁,杀死进程解决死锁
查询死锁进程和表 SELECT request_session_id AS spid , OBJECT_NAME(resource_associated_entity_id) AS 'table' F ...
- 一个简单的MyBatis项目(应用)
### 1. MYBATIS简介 MYBATIS是持久层框架,大大的简化了持久层开发. 当使用MYBATIS框架时,开发人员不必再编写繁琐的JDBC代码,只需要定义好每个功能对应的抽象方法与需要执 ...
- element-ui的table表格控件表头与内容列不对齐问题
原文链接:点我 element-ui的table表格控件表头与内容列不对齐问题 解决方法:将以下样式代码添加到index.html.或app.vue中(必须是入口文件,起全局作用!)body .el- ...
- 洛谷1345 [Usaco5.4]奶牛的电信
题目描述 农夫约翰的奶牛们喜欢通过电邮保持联系,于是她们建立了一个奶牛电脑网络,以便互相交流.这些机器用如下的方式发送电邮:如果存在一个由c台电脑组成的序列a1,a2,...,a(c),且a1与a2相 ...