Whitening
The goal of whitening is to make the input less redundant; more formally, our desiderata are that our learning algorithms sees a training input where (i) the features are less correlated with each other, and (ii) the features all have the same variance.
example
How can we make our input features uncorrelated with each other? We had already done this when computing
. Repeating our previous figure, our plot for
was:
The covariance matrix of this data is given by:
It is no accident that the diagonal values are
and
. Further, the off-diagonal entries are zero; thus,
and
are uncorrelated, satisfying one of our desiderata for whitened data (that the features be less correlated).
To make each of our input features have unit variance, we can simply rescale each feature
by
. Concretely, we define our whitened data
as follows:
Plotting
, we get:
This data now has covariance equal to the identity matrix
. We say that
is our PCA whitened version of the data: The different components of
are uncorrelated and have unit variance.
ZCA Whitening
Finally, it turns out that this way of getting the data to have covariance identity
isn't unique. Concretely, if
is any orthogonal matrix, so that it satisfies
(less formally, if
is a rotation/reflection matrix), then
will also have identity covariance. In ZCA whitening, we choose
. We define
Plotting
, we get:
It can be shown that out of all possible choices for
, this choice of rotation causes
to be as close as possible to the original input data
.
When using ZCA whitening (unlike PCA whitening), we usually keep all
dimensions of the data, and do not try to reduce its dimension.
Regularizaton
When implementing PCA whitening or ZCA whitening in practice, sometimes some of the eigenvalues
will be numerically close to 0, and thus the scaling step where we divide by
would involve dividing by a value close to zero; this may cause the data to blow up (take on large values) or otherwise be numerically unstable. In practice, we therefore implement this scaling step using a small amount of regularization, and add a small constant
to the eigenvalues before taking their square root and inverse:
When
takes values around
, a value of
might be typical.
For the case of images, adding
here also has the effect of slightly smoothing (or low-pass filtering) the input image. This also has a desirable effect of removing aliasing artifacts caused by the way pixels are laid out in an image, and can improve the features learned (details are beyond the scope of these notes).
ZCA whitening is a form of pre-processing of the data that maps it from
to
. It turns out that this is also a rough model of how the biological eye (the retina) processes images. Specifically, as your eye perceives images, most adjacent "pixels" in your eye will perceive very similar values, since adjacent parts of an image tend to be highly correlated in intensity. It is thus wasteful for your eye to have to transmit every pixel separately (via your optic nerve) to your brain. Instead, your retina performs a decorrelation operation (this is done via retinal neurons that compute a function called "on center, off surround/off center, on surround") which is similar to that performed by ZCA. This results in a less redundant representation of the input image, which is then transmitted to your brain.
Whitening的更多相关文章
- (六)6.8 Neurons Networks implements of PCA ZCA and whitening
PCA 给定一组二维数据,每列十一组样本,共45个样本点 -6.7644914e-01 -6.3089308e-01 -4.8915202e-01 ... -4.4722050e-01 -7.4 ...
- (六)6.7 Neurons Networks whitening
PCA的过程结束后,还有一个与之相关的预处理步骤,白化(whitening) 对于输入数据之间有很强的相关性,所以用于训练数据是有很大冗余的,白化的作用就是降低输入数据的冗余,通过白化可以达到(1)降 ...
- UFLDL教程之(三)PCA and Whitening exercise
Exercise:PCA and Whitening 第0步:数据准备 UFLDL下载的文件中,包含数据集IMAGES_RAW,它是一个512*512*10的矩阵,也就是10幅512*512的图像 ( ...
- Deep Learning学习随记(二)Vectorized、PCA和Whitening
接着上次的记,前面看了稀疏自编码.按照讲义,接下来是Vectorized, 翻译成向量化?暂且这么认为吧. Vectorized: 这节是老师教我们编程技巧了,这个向量化的意思说白了就是利用已经被优化 ...
- Modeling Filters and Whitening Filters
Colored and White Process White Process White Process,又称为White Noise(白噪声),其中white来源于白光,寓意着PSD的平坦分布,w ...
- 白化(Whitening): PCA 与 ZCA (转)
转自:findbill 本文讨论白化(Whitening),以及白化与 PCA(Principal Component Analysis) 和 ZCA(Zero-phase Component Ana ...
- CS229 6.8 Neurons Networks implements of PCA ZCA and whitening
PCA 给定一组二维数据,每列十一组样本,共45个样本点 -6.7644914e-01 -6.3089308e-01 -4.8915202e-01 ... -4.4722050e-01 -7.4 ...
- CS229 6.7 Neurons Networks whitening
PCA的过程结束后,还有一个与之相关的预处理步骤,白化(whitening) 对于输入数据之间有很强的相关性,所以用于训练数据是有很大冗余的,白化的作用就是降低输入数据的冗余,通过白化可以达到(1)降 ...
- PCA和Whitening
PCA: PCA的具有2个功能,一是维数约简(可以加快算法的训练速度,减小内存消耗等),一是数据的可视化. PCA并不是线性回归,因为线性回归是保证得到的函数是y值方面误差最小,而PCA是保证得到的函 ...
- 【DeepLearning】Exercise:PCA and Whitening
Exercise:PCA and Whitening 习题链接:Exercise:PCA and Whitening pca_gen.m %%============================= ...
随机推荐
- c++几种排序算法代码
#include <iostream> #include <vector> using namespace std; //交换int void swap(int& a, ...
- caffe(2) 数据层及参数
要运行caffe,需要先创建一个模型(model),如比较常用的Lenet,Alex等, 而一个模型由多个屋(layer)构成,每一屋又由许多参数组成.所有的参数都定义在caffe.proto这个文件 ...
- nginx设置可以默认访问index.php
vim /usr/local/nginx/conf/nginx.conf: 在 location /{ index index.php index.html i ...
- NodeJS学习笔记 (22)全局对象-global
https://github.com/chyingp/nodejs-learning-guide
- mysql(for update)悲观锁总结与实践
悲观锁,正如其名,它指的是对数据被外界(包括本系统当前的其他事务,以及来自外部系统的事务处理)修改持保守态度,因此,在整个数据处理过程中,将数据处于锁定状态.悲观锁的实现,往往依靠数据库提供的锁机制( ...
- 关于Windows7下创建Cocos2D-X项目的小问题
"新版的Cocos2D-X"已经不支持用上述脚本来创建工程了,而是改为用create-project.py来创建...命令格式: python create-project.py ...
- 使用ThoughtWorks.QRCode生成二维码
新建Windows应用程序,加入引用ThoughtWorks.QRCode.dll,编写代码生成二维码. using System; using System.Drawing; using Syste ...
- 思科E3200 路由器 DD-WRT 设置花生壳和3322.org动态域名(DDNS)
花生壳设置(已測试) ddns.oray.com:80 username aaaa password bbbb 主机名 abc.gicp.net URL /ph/update?ho ...
- 怎样给UINavigationBar加入button?
Mads Mobæk:给UINavigationBar加入button的演示样例代码 1 2 3 4 5 6 7 8 UIBarButtonItem *rightButton = [[UIBarBut ...
- [Java][log4j]支持同一时候按日期和文件大小切割日志
依据DailyRollingFileAppender和RollingFileAppender改编,支持按日期和文件大小切割日志. 源文件: package com.bao.logging; impo ...