The goal of whitening is to make the input less redundant; more formally, our desiderata are that our learning algorithms sees a training input where (i) the features are less correlated with each other, and (ii) the features all have the same variance.

example

How can we make our input features uncorrelated with each other? We had already done this when computing . Repeating our previous figure, our plot for was:

The covariance matrix of this data is given by:

It is no accident that the diagonal values are and . Further, the off-diagonal entries are zero; thus, and are uncorrelated, satisfying one of our desiderata for whitened data (that the features be less correlated).

To make each of our input features have unit variance, we can simply rescale each feature by . Concretely, we define our whitened data as follows:

Plotting , we get:

This data now has covariance equal to the identity matrix . We say that is our PCA whitened version of the data: The different components of are uncorrelated and have unit variance.

ZCA Whitening

Finally, it turns out that this way of getting the data to have covariance identity isn't unique. Concretely, if is any orthogonal matrix, so that it satisfies (less formally, if is a rotation/reflection matrix), then will also have identity covariance. In ZCA whitening, we choose . We define

Plotting , we get:

It can be shown that out of all possible choices for , this choice of rotation causes to be as close as possible to the original input data .

When using ZCA whitening (unlike PCA whitening), we usually keep all dimensions of the data, and do not try to reduce its dimension.

Regularizaton

When implementing PCA whitening or ZCA whitening in practice, sometimes some of the eigenvalues will be numerically close to 0, and thus the scaling step where we divide by would involve dividing by a value close to zero; this may cause the data to blow up (take on large values) or otherwise be numerically unstable. In practice, we therefore implement this scaling step using a small amount of regularization, and add a small constant to the eigenvalues before taking their square root and inverse:

When takes values around , a value of might be typical.

For the case of images, adding here also has the effect of slightly smoothing (or low-pass filtering) the input image. This also has a desirable effect of removing aliasing artifacts caused by the way pixels are laid out in an image, and can improve the features learned (details are beyond the scope of these notes).

ZCA whitening is a form of pre-processing of the data that maps it from to . It turns out that this is also a rough model of how the biological eye (the retina) processes images. Specifically, as your eye perceives images, most adjacent "pixels" in your eye will perceive very similar values, since adjacent parts of an image tend to be highly correlated in intensity. It is thus wasteful for your eye to have to transmit every pixel separately (via your optic nerve) to your brain. Instead, your retina performs a decorrelation operation (this is done via retinal neurons that compute a function called "on center, off surround/off center, on surround") which is similar to that performed by ZCA. This results in a less redundant representation of the input image, which is then transmitted to your brain.

Whitening的更多相关文章

  1. (六)6.8 Neurons Networks implements of PCA ZCA and whitening

    PCA 给定一组二维数据,每列十一组样本,共45个样本点 -6.7644914e-01  -6.3089308e-01  -4.8915202e-01 ... -4.4722050e-01  -7.4 ...

  2. (六)6.7 Neurons Networks whitening

    PCA的过程结束后,还有一个与之相关的预处理步骤,白化(whitening) 对于输入数据之间有很强的相关性,所以用于训练数据是有很大冗余的,白化的作用就是降低输入数据的冗余,通过白化可以达到(1)降 ...

  3. UFLDL教程之(三)PCA and Whitening exercise

    Exercise:PCA and Whitening 第0步:数据准备 UFLDL下载的文件中,包含数据集IMAGES_RAW,它是一个512*512*10的矩阵,也就是10幅512*512的图像 ( ...

  4. Deep Learning学习随记(二)Vectorized、PCA和Whitening

    接着上次的记,前面看了稀疏自编码.按照讲义,接下来是Vectorized, 翻译成向量化?暂且这么认为吧. Vectorized: 这节是老师教我们编程技巧了,这个向量化的意思说白了就是利用已经被优化 ...

  5. Modeling Filters and Whitening Filters

    Colored and White Process White Process White Process,又称为White Noise(白噪声),其中white来源于白光,寓意着PSD的平坦分布,w ...

  6. 白化(Whitening): PCA 与 ZCA (转)

    转自:findbill 本文讨论白化(Whitening),以及白化与 PCA(Principal Component Analysis) 和 ZCA(Zero-phase Component Ana ...

  7. CS229 6.8 Neurons Networks implements of PCA ZCA and whitening

    PCA 给定一组二维数据,每列十一组样本,共45个样本点 -6.7644914e-01  -6.3089308e-01  -4.8915202e-01 ... -4.4722050e-01  -7.4 ...

  8. CS229 6.7 Neurons Networks whitening

    PCA的过程结束后,还有一个与之相关的预处理步骤,白化(whitening) 对于输入数据之间有很强的相关性,所以用于训练数据是有很大冗余的,白化的作用就是降低输入数据的冗余,通过白化可以达到(1)降 ...

  9. PCA和Whitening

    PCA: PCA的具有2个功能,一是维数约简(可以加快算法的训练速度,减小内存消耗等),一是数据的可视化. PCA并不是线性回归,因为线性回归是保证得到的函数是y值方面误差最小,而PCA是保证得到的函 ...

  10. 【DeepLearning】Exercise:PCA and Whitening

    Exercise:PCA and Whitening 习题链接:Exercise:PCA and Whitening pca_gen.m %%============================= ...

随机推荐

  1. FlatternMap和Map的区别

    flattenMap使用步骤:     1.传入一个block,block类型是返回值RACStream,参数value     2.参数value就是源信号的内容,拿到源信号的内容做处理     3 ...

  2. [转载]-分布式之redis复习精讲

    原创地址:https://www.cnblogs.com/rjzheng/p/9096228.html 看这篇文章前,我看的是另一个人博客上的文章.看到最后(评论这一块)很多人就指出这并非原创而是抄袭 ...

  3. PostgreSQL创建只读用户

    创建用户及指定密码: CREATE USER readonly WITH ENCRYPTED PASSWORD 'ropass'; 设置用户默认事务只读: alter user readonly se ...

  4. 恐怖的奴隶主(bob)

    题目 试题3:恐怖的奴隶主(bob) 源代码:bob.cpp 输入文件:bob.in 输出文件:bob.out 时间限制:1s 空间限制:512MB 题目描述 小L热衷于undercards. 在un ...

  5. linux命令su与su-的差别

    su命令和su -命令最大的本质差别就是: su仅仅是切换了root身份.但Shell环境仍然是普通用户的Shell. 而su -连用户和Shell环境一起切换成root身份了. 仅仅有切换了Shel ...

  6. android学习笔记五。2、其他组件

    一.ContentProvider内容提供者.是是android中一个应用向第三方共享数据的方式,android中的联系人,sms(短信记录)等都是通过这一方式来向外提供的 1.使用: 在应用中使用C ...

  7. 随机模拟的基本思想和常用采样方法(sampling)

    转自:http://blog.csdn.net/xianlingmao/article/details/7768833 引入 我们会遇到很多问题无法用分析的方法来求得精确解,例如由于式子特别,真的解不 ...

  8. linux sed命令详解 --大量举例

    1. Sed简介 sed 是一种在线编辑器,它一次处理一行内容.处理时,把当前处理的行存储在临时缓冲区中,称为“模式空间”(pattern space),接着用sed命令处理缓冲区中的内容,处理完成后 ...

  9. BZOJ3130: [Sdoi2013]费用流(二分,最大流)

    Description Alice和Bob在图论课程上学习了最大流和最小费用最大流的相关知识.    最大流问题:给定一张有向图表示运输网络,一个源点S和一个汇点T,每条边都有最大流量.一个合法的网络 ...

  10. Scrapy框架使用代理

    使用代理抓取https://www.baidu.com/s?wd=ip # -*- coding: utf-8 -*- ''' 一.在settings.py中开启中间件 DOWNLOADER_MIDD ...