LightOJ - 1132 Summing up Powers 矩阵高速幂
题目大意:求(1^K + 2^K + 3K + … + N^K) % 2^32
解题思路:
借用别人的图
能够先打表,求出Cnm,用杨辉三角能够高速得到
#include<cstdio>
typedef unsigned long long ll;
const int N = 55;
const ll mod = (1LL << 32);
struct Matrix{
ll mat[N][N];
}A, B, tmp;
ll n, num[N];
ll C[N][N];
int K;
void init2() {
C[0][0] = 1;
for(int i = 1; i <= 50; i++) {
C[i][i] = C[i][0] = 1;
for(int j = 1; j < i; j++)
C[i][j] = (C[i-1][j-1] + C[i-1][j]) % mod;
}
}
Matrix matMul(const Matrix &x, const Matrix &y) {
for(int i = 0; i < K + 2; i++)
for(int j = 0; j < K + 2; j++) {
tmp.mat[i][j] = 0;
for(int k = 0; k < K + 2; k++) {
tmp.mat[i][j] = (tmp.mat[i][j] + x.mat[i][k] * y.mat[k][j]) % mod;
}
}
return tmp;
}
void solve() {
while(n) {
if(n & 1)
B = matMul(B,A);
A = matMul(A,A);
n >>= 1;
}
}
void init() {
for(int i = 0; i < K + 2; i++)
for(int j = 0; j < K + 2; j++) {
B.mat[i][j] = A.mat[i][j] = 0;
if(i == j)
B.mat[i][j] = 1;
}
A.mat[0][0] = 1;
for(int i = 1; i < K + 2; i++)
A.mat[i][0] = A.mat[i][1] = C[K][i-1];
for(int i = 2; i < K + 2; i++)
for(int j = i; j < K + 2; j++) {
A.mat[j][i] = C[K-i+1][j-i];
}
}
int main() {
int test, cas = 1;
scanf("%d", &test);
init2();
while(test--) {
scanf("%lld%d", &n, &K);
printf("Case %d: ", cas++);
ll ans = ( (n % mod) * ( (n + 1) % mod) / 2) % mod;
if(K == 1) {
printf("%lld\n", ans);
continue;
}
init();
n--;
solve();
ans = 0;
for(int i = 0; i < K + 2; i++)
ans = (ans + B.mat[i][0] ) % mod;
printf("%lld\n", ans);
}
return 0;
}
LightOJ - 1132 Summing up Powers 矩阵高速幂的更多相关文章
- LightOJ 1132 Summing up Powers:矩阵快速幂 + 二项式定理
题目链接:http://lightoj.com/volume_showproblem.php?problem=1132 题意: 给定n.k,求(1K + 2K + 3K + ... + NK) % 2 ...
- lightOJ 1132 Summing up Powers(矩阵 二分)
题目链接:http://lightoj.com/volume_showproblem.php?problem=1132 题意:给出n和m.求sum(i^m)%2^32.(1<=i<=n) ...
- LightOJ 1070 Algebraic Problem (推导+矩阵高速幂)
题目链接:problem=1070">LightOJ 1070 Algebraic Problem 题意:已知a+b和ab的值求a^n+b^n.结果模2^64. 思路: 1.找递推式 ...
- UVA 11551 - Experienced Endeavour(矩阵高速幂)
UVA 11551 - Experienced Endeavour 题目链接 题意:给定一列数,每一个数相应一个变换.变换为原先数列一些位置相加起来的和,问r次变换后的序列是多少 思路:矩阵高速幂,要 ...
- UVA10518 - How Many Calls?(矩阵高速幂)
UVA10518 - How Many Calls?(矩阵高速幂) 题目链接 题目大意:给你fibonacci数列怎么求的.然后问你求f(n) = f(n - 1) + f(n - 2)须要多少次调用 ...
- HDU2842-Chinese Rings(递推+矩阵高速幂)
pid=2842">题目链接 题意:求出最少步骤解出九连环. 取出第k个的条件是,k-2个已被取出,k-1个仍在支架上. 思路:想必九连环都玩过吧,事实上最少步骤就是从最后一个环開始. ...
- HDU2276 - Kiki & Little Kiki 2(矩阵高速幂)
pid=2276">题目链接 题意:有n盏灯.编号从1到n.他们绕成一圈,也就是说.1号灯的左边是n号灯.假设在第t秒的时候,某盏灯左边的灯是亮着的,那么就在第t+1秒的时候改变这盏灯 ...
- uva 10655 - Contemplation! Algebra(矩阵高速幂)
题目连接:uva 10655 - Contemplation! Algebra 题目大意:输入非负整数,p.q,n,求an+bn的值,当中a和b满足a+b=p,ab=q,注意a和b不一定是实数. 解题 ...
- hdu 3221 Brute-force Algorithm(高速幂取模,矩阵高速幂求fib)
http://acm.hdu.edu.cn/showproblem.php?pid=3221 一晚上搞出来这么一道题..Mark. 给出这么一个程序.问funny函数调用了多少次. 我们定义数组为所求 ...
随机推荐
- Linux学习总结(17)——Linux新手必须学会的12个命令
今天的用户可以根据自己的意愿选择是否使用作为Linux象征的命令行,确切的证明了Linux已经有了很大的发展.现在很多Linux发行版的图形用户界面已经非常强大,不再需要命令行. 但是命令行在Linu ...
- Action访问ServletAPI的三种方式
一.前言 Struts是一种基于MVC设计模式的web应用框架,主要担任C的角色,用于分离页面显示和业务逻辑处理,那其实在我们学习jsp的时候学过一个具有类似功能的东西——servlet.其实Stru ...
- 第十一章 Servlet MVC模式
内包含案例,基于jsp+servlet的:MVC模式计算器:MVC模式登陆 第十一章 Servlet MVC模式 模型-视图-控制器(model-view-controller),简称MVC.MVC是 ...
- bzoj-1492 货币兑换Cash (1)——平衡树维护凸包
题意: 有n天和m的初始金钱,用来购买AB两种纪念券: n天里每天都有AB的价格.每天能够进行这种操作. 1.卖出手中x%的纪念券(AB分别都卖出x%). 2.用x的金钱买入纪念券.买入AB券的比例在 ...
- linux下线程
linux下线程 线程与进程的关系: 之前转载的微信文章,进程与线程的差别已经说得比較清楚了.能够查看之前转载的文章.linux进程与线程的差别. 创建一个线程: #include<pthrea ...
- 一分钟了解Android横竖屏 mdpi hdpi xhdpi xxhdpi xxxhdpi
DPI:每英寸像素数 简单的屏幕分辨率计算方法: DisplayMetrics metrics = this.getResources().getDisplayMetrics(); float den ...
- oracle 时间戳TIMESTAMP
//数据库 UPDATETIMESTAMP TIMESTAMP(6) //dto /** 更新时间戳 **/ private String updatetimestamp; //dao //插入操作 ...
- iOS-MBProgressHUD使用
在码代码过程中,我们经常用到MBProgressHUD,但我很少实例化使用,一般都是偷个懒直接显示隐藏,这里贴上详解,以便日后有样式要求时使用. 1,MBProgressHUD常用属性和用法Demo ...
- sql server 无法创建索引 因为对象名称和索引名称重复
需求分析:如下图所示,给T_DD_OP1200_Final表的Id字段添加主键,保存时弹出 “T_DD_OP1200_Final”表- 无法创建索引“PK_T_DD_OP1200_Final”. 因为 ...
- Android自定义TabBar
转载请说明出处:http://www.sunhome.org.cn 我发现现在的移动开发界面都被iOS主导了,UI动不动设计出来的东西都是ios的风格,对于一个做Android的程序员来说甚是苦恼啊, ...