数论之证明数n等于其因数的欧拉函数值之和
定理:
任何正整数n等于其因数的欧拉函数值之和,即∑d|nφ(d)=n
证明:
设一个集合{1/n,2/n,3/n,...,(n-1)/n,n/n}
对于上述的分式集合,若我们都将其化简至最简形式,设其中一个最简形式是a/b,那么我们一定有:
b|n ①
(a,b)=1 ②
a<=b ③
由②③可得,对于一个确定的b,它对应的a的个数为φ(b)(根据欧拉函数的定义:φ(n)=1到n中与n互质的数的个数)
那么我们再考虑,每一个最简形式a/b都是互相不同的,因为它们都是最简形式
而且,对于上述分数集合来说每一个元素都可以化简成最简形式(完备性),而元素的个数正好就是n
于是定理得证
数论之证明数n等于其因数的欧拉函数值之和的更多相关文章
- Note -「因数的欧拉函数求和」
归档. 试证明:\(\sum \limits _{d | x} \varphi (d) = x\) Lemma 1. 试证明:\(\sum \limits _{d | p^k} \varphi (d) ...
- Codeforces_776E: The Holmes Children (数论 欧拉函数)
题目链接 先看题目中给的函数f(n)和g(n) 对于f(n),若自然数对(x,y)满足 x+y=n,且gcd(x,y)=1,则这样的数对对数为f(n) 证明f(n)=phi(n) 设有命题 对任意自然 ...
- Codeforces 776E: The Holmes Children (数论 欧拉函数)
题目链接 先看题目中给的函数f(n)和g(n) 对于f(n),若自然数对(x,y)满足 x+y=n,且gcd(x,y)=1,则这样的数对对数为f(n) 证明f(n)=phi(n) 设有命题 对任意自然 ...
- UVA 10820 - Send a Table 数论 (欧拉函数)
Send a Table Input: Standard Input Output: Standard Output When participating in programming contest ...
- bzoj 2818 GCD 数论 欧拉函数
bzoj[2818]Gcd Description 给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的数对(x,y)有多少对. Input 一个整数N Output 如题 Samp ...
- 数论-欧拉函数-LightOJ - 1370
我是知道φ(n)=n-1,n为质数 的,然后给的样例在纸上一算,嗯,好像是找往上最近的质数就行了,而且有些合数的欧拉函数值还会比比它小一点的质数的欧拉函数值要小,所以坚定了往上找最近的质数的决心—— ...
- 数论的欧拉定理证明 & 欧拉函数公式(转载)
欧拉函数 :欧拉函数是数论中很重要的一个函数,欧拉函数是指:对于一个正整数 n ,小于 n 且和 n 互质的正整数(包括 1)的个数,记作 φ(n) . 完全余数集合:定义小于 n 且和 n 互质的数 ...
- acm数论之旅--欧拉函数的证明
随笔 - 20 文章 - 0 评论 - 73 ACM数论之旅7---欧拉函数的证明及代码实现(我会证明都是骗人的╮( ̄▽ ̄)╭) https://blog.csdn.net/chen_ze_hua ...
- 刷题3:给定一个数组 nums,判断 nums 中是否存在三个下标 a,b,c数相加等于targe且a,b,c不相等
题目: 给定一个包含 n 个整数的数组 nums,判断 nums 中是否存在三个元素 a,b,c ,下标 ,a ,b , c 对应数相加等于 targe 找出所有满足条件且不重复的三元组下标 解析: ...
随机推荐
- poj1961--Period(KMP求最小循环节)
Period Time Limit: 3000MS Memory Limit: 30000K Total Submissions: 13511 Accepted: 6368 Descripti ...
- mpi之MPI_Sendrecv的用法
mpi变成常用命令 编译c程序 gcc 例: gcc -Wall -o my_sa my_sa.c 若要编译c++,需要连接, 加参数 gcc -Wall -o my_sa my_sa.cpp - ...
- nyoj--37--回文字符串(动态规划)
回文字符串 时间限制:3000 ms | 内存限制:65535 KB 难度:4 描述 所谓回文字符串,就是一个字符串,从左到右读和从右到左读是完全一样的,比如"aba".当然, ...
- luogu 2679 子串
子串 史上最简短的一篇博客,毕竟看题解ac心疼我的kmp /* f[i][j][k][0/1]表示A的前i个,B的前j个,用到了k个子串,当前字符选或者不选. 所以f[0][0][0][0]的方案数为 ...
- 【DNN 系列 创建WEB模块 项目】
现在DNN已经更新到8.0.3 然而使用7.0 的项目模块 会报错, 就是填写网站的时候 会再网站的项目当中添加文件夹这样会破坏网站 所以来自己创建自己的模板项目 首选创建空的WEB 项目网站 创建完 ...
- CSS3的常用属性(一)
选择器 属性选择器(通过标签属性来选择) E[attr]: 表示只要元素<E>存在属性attr就能被选中 如: div[class] E[attr=val]: 表示元素<E> ...
- (转载)自定义View——弹性滑动
滑动是Android开发中非常重要的UI效果,几乎所有应用都包含了滑动效果,而本文将对滑动的使用以及原理进行介绍. 一.scrollTo与ScrollBy View提供了专门的方法用于实现滑动效果,分 ...
- Hibernate框架学习(一)——入门
一.框架是什么 1.框架是用来提高开发效率的 2.封装好了一些功能,我们需要使用这些功能时,调用即可,不需要手动实现 3.框架可以理解成一个半成品的项目,只要懂得如何驾驭这些功能即可 二.hibern ...
- Android学习——LinearLayout布局实现居中、左对齐、右对齐
android:orientation="vertical"表示该布局下的元素垂直排列: 在整体垂直排列的基础上想要实现内部水平排列,则在整体LinearLayout布局下再创建一 ...
- 转js resplace方法使用
作者: hezhiwu5#163.com 时间:2007-3-22 大家好!!今晚在华软G43*宿舍没什么事做,把javascript中replace方法讲解一下,如果讲得不对或不合理是情理之中 ...