主席树可持久化数组,还挺好YY的

然而加强版要路径压缩。。

发现压了都RE

结果看了看数据,默默的把让fx的父亲变成fy反过来让fy的父亲变成fx

搞笑啊

#include<cstdio>
#include<iostream>
#include<cstring>
#include<cstdlib>
#include<algorithm>
#include<cmath>
using namespace std; int n;
struct chairman_tree
{
int lc,rc,c;
}tr[];int trlen,rt[];
int maketree(int now,int l,int r,int p,int k)
{
if(now==)now=++trlen;
tr[now].lc=tr[now].rc=;
tr[now].c=-; if(l==r)tr[now].c=k;
else
{
int mid=(l+r)/;
if(p<=mid)tr[now].lc=maketree(tr[now].lc,l,mid,p,k);
else tr[now].rc=maketree(tr[now].rc,mid+,r,p,k);
}
return now;
}
int merge(int x,int y)
{
if(x==||y==)return x+y;
tr[x].lc=merge(tr[x].lc,tr[y].lc);
tr[x].rc=merge(tr[x].rc,tr[y].rc);
return x;
} int gofind(int now,int l,int r,int p)
{
if(l==r)return tr[now].c;
int mid=(l+r)/;
if(p<=mid)return gofind(tr[now].lc,l,mid,p);
else return gofind(tr[now].rc,mid+,r,p);
}
int findfa(int t,int x)
{
int F=gofind(rt[t],,n,x);
if(F==x)return x;
int tf=findfa(t,F);
if(tf!=F)
{
int root=rt[t];
rt[t]=maketree(,,n,x,tf);
rt[t]=merge(rt[t],root);
}
return tf;
} int main()
{
freopen("disjoint.in","r",stdin);
freopen("disjoint.out","w",stdout);
int Q;
scanf("%d%d",&n,&Q);
trlen=;memset(rt,,sizeof(rt));
for(int i=;i<=n;i++)
{
rt[i]=maketree(rt[i],,n,i,i);
rt[i]=merge(rt[i],rt[i-]);
} int op,x,y,tim=,ans=;
while(Q--)
{
scanf("%d",&op);
if(op==)
{
scanf("%d%d",&x,&y);
int fx=findfa(tim+n,x);
int fy=findfa(tim+n,y);
tim++;
rt[tim+n]=maketree(rt[tim+n],,n,fy,fx);
rt[tim+n]=merge(rt[tim+n],rt[tim+n-]);
}
else if(op==)
{
scanf("%d",&x);
tim++;
rt[tim+n]=rt[x+n];
}
else
{
scanf("%d%d",&x,&y);
int fx=findfa(tim+n,x);
int fy=findfa(tim+n,y);
ans=(fx==fy);
printf("%d\n",ans);
tim++;
rt[tim+n]=rt[tim+n-];
}
}
return ;
}

bzoj3673: 可持久化并查集 by zky&&3674: 可持久化并查集加强版的更多相关文章

  1. 【BZOJ】3673: 可持久化并查集 by zky & 3674: 可持久化并查集加强版(可持久化线段树)

    http://www.lydsy.com/JudgeOnline/problem.php?id=3674 http://www.lydsy.com/JudgeOnline/problem.php?id ...

  2. bzoj3673可持久化并查集 by zky&&bzoj3674可持久化并查集加强版

    bzoj3673可持久化并查集 by zky 题意: 维护可以恢复到第k次操作后的并查集. 题解: 用可持久化线段树维护并查集的fa数组和秩(在并查集里的深度),不能路径压缩所以用按秩启发式合并,可以 ...

  3. [bzoj3673][可持久化并查集 by zky] (rope(可持久化数组)+并查集=可持久化并查集)

    Description n个集合 m个操作 操作: 1 a b 合并a,b所在集合 2 k 回到第k次操作之后的状态(查询算作操作) 3 a b 询问a,b是否属于同一集合,是则输出1否则输出0 0& ...

  4. 【BZOJ 3674】可持久化并查集加强版&【BZOJ 3673】可持久化并查集 by zky 用可持久化线段树破之

    最后还是去掉异或顺手A了3673,,, 并查集其实就是fa数组,我们只需要维护这个fa数组,用可持久化线段树就行啦 1:判断是否属于同一集合,我加了路径压缩. 2:直接把跟的值指向root[k]的值破 ...

  5. BZOJ3673 可持久化并查集 by zky 【主席树】

    BZOJ3673 可持久化并查集 by zky Description n个集合 m个操作 操作: 1 a b 合并a,b所在集合 2 k 回到第k次操作之后的状态(查询算作操作) 3 a b 询问a ...

  6. 【BZOJ3673】&&【BZOJ3674】: 可持久化并查集 by zky 可持久化线段树

    没什么好说的. 可持久化线段树,叶子节点存放父亲信息,注意可以规定编号小的为父亲. Q:不是很清楚空间开多大,每次询问父亲操作后修改的节点个数是不确定的.. #include<bits/stdc ...

  7. 3673: 可持久化并查集 by zky

    3673: 可持久化并查集 by zky Time Limit: 5 Sec  Memory Limit: 128 MBSubmit: 2170  Solved: 978[Submit][Status ...

  8. Bzoj 3673: 可持久化并查集 by zky(主席树+启发式合并)

    3673: 可持久化并查集 by zky Time Limit: 5 Sec Memory Limit: 128 MB Description n个集合 m个操作 操作: 1 a b 合并a,b所在集 ...

  9. bzoj 3673&3674: 可持久化并查集 by zky

    Description n个集合 m个操作 操作: 1 a b 合并a,b所在集合 2 k 回到第k次操作之后的状态(查询算作操作) 3 a b 询问a,b是否属于同一集合,是则输出1否则输出0 0& ...

随机推荐

  1. Spring Boot (1) 构建第一个Spring Boot工程

    Spring boot简介 spring boot是spring官方推出的一个全新框架,其设计目的是用来简化新spring应用的初始搭建以及开发过程. Spring boot特点 1.化繁为简,简化配 ...

  2. spring jdbc、事务(三)

    spring整合jdbc spring中提供了一个可以操作数据库的对象(JDBCTemplate),对象封装了jdbc技术. 1.使用spring整合jdbc需要jdbc驱动.c3p0连接池.spri ...

  3. Dubbo的@Reference和@Service说明---1Reference用在消费者2Service用在提供者【import com.alibaba.dubbo.config.annotation.Service;】

    @Reference 用在消费端,表明使用的是服务端的什么服务@RestControllerpublic class RemoteUserController { @Reference(version ...

  4. Oracle 生成数据字典

    SELECT ROWNUM 序号,A.COLUMN_NAME AS "字段名称",B.comments AS "字段描述", A.DATA_TYPE as 字段 ...

  5. 【Linux】计划任务管理crontab、at

    一.计划任务管理 —— crontab 1. crontab 命令 •  按照预先设置的时间周期(分钟.小时.天…… )重复执行用户指定的命令操作,属于周期性计划任务,默认打开“/var/spool/ ...

  6. DHCP 和 MDT 分开服务器的设置方法

    DHCP设置 043:供应商特定信息:01 04 00 00 00 00 FF 060:PXEClient:PXEClient 066:启动服务器主机名:IP 067:启动文件名:\Boot\x86\ ...

  7. 用JSP实现动态交互

    一.什么是JSP? 1.在HTML中嵌入Java脚本代码 2.由应用服务器中的JSP引擎来编译和执行嵌入的Java脚本代码 3.然后将生成的整个页面信息返回给客户端   二.为什么需要基于B/S技术的 ...

  8. python3设置打开文件的编码

    f = open(file_path,'r',encoding='utf8') 用起来很方便,不需要先读取再转码了.

  9. SLAM: 图像角点检测的Fast算法(时间阈值实验)

    作为角点检测的一种快速方法,FastCornerDetect算法比Harris方法.SIft方法都要快一些,应用于实时性要求较高的场合,可以直接应用于SLAM的随机匹配过程.算法来源于2006年的Ed ...

  10. 递归删除List元素

    public List<Redenvelope> DeleteList(List<Redenvelope> list) { foreach (var item in list) ...