洛谷P2455 [SDOI2006]线性方程组(高斯消元)
题目描述
已知n元线性一次方程组。
其中:n<=50, 系数是[b][color=red]整数<=100(有负数),bi的值都是整数且<300(有负数)(特别感谢U14968 mmqqdd提出题目描述的说明)(redbag:是mqd自己要我写的= =)[/color][/b].
编程任务:
根据输入的数据,编程输出方程组的解的情况。
输入输出格式
输入格式:
第一行:未知数的个数。以下n行n+1列:分别表示每一格方程的系数及方程右边的值。
输出格式:
如果方程组无实数解输出-1;
如果有无穷多实数解,输出0;
如果有唯一解,则输出解(小数点后保留两位小数)。
输入输出样例
3
2 -1 1 1
4 1 -1 5
1 1 1 0
x1=1.00
x2=0
x3=-1.00
裸的高斯消元
不过这题真的是,往死里卡精度。。
注意先判无解,再判无穷
// luogu-judger-enable-o2
#include<cstdio>
#include<algorithm>
const double eps = 1e-;
inline int read() {
char c = getchar(); int x = , f = ;
while(c < '' || c > '') { if(c == '-')f = -; c = getchar(); }
while(c >= '' && c <= '') x = x * + c - '', c = getchar();
return x * f;
}
const int MAXN = ;
int N;
double a[MAXN][MAXN];
double Ans[MAXN];
double fabs(double x) {return x < ? -x : x;}
void Gauss() {
for(int i = ; i <= N; i++) {
int mx = i;
for(int j = i + ; j <= N; j++)
if(fabs(a[j][i]) > fabs(a[mx][i])) mx = j;
if(mx != i) std::swap(a[mx], a[i]);
if(fabs(a[i][i]) >= eps)
for(int j = ; j <= N; j++) {
if(i == j) continue;
double temp = a[j][i] / a[i][i];
for(int k = ; k <= N + ; k++)
a[j][k] -= temp * a[i][k];
}
}
int NoSolution = , ManySolution = ;
for(int i = ; i <= N; i++) {
int num = ;
for(int j = ; j <= N + ; j++)
if(a[i][j] == ) num ++;
else break;
if(num == N + ) ManySolution = ;
if(num == N && a[i][N+] != ) NoSolution = ;
}
if(NoSolution) {printf("-1");return ;}
if(ManySolution) {printf("");return ;}
for(int i = N; i >= ; i--) {
Ans[i] = a[i][N+] / a[i][i];
for(int j = i; j >= ; j--)
a[j][N+] -= a[j][i] * Ans[i];
}
for(int i = ; i <= N; i++)
printf("x%d=%.2lf\n",i,Ans[i]);
}
int main() {
#ifdef WIN32
freopen("a.in", "r", stdin);
#endif
N = read();
for(int i = ; i <= N; i++)
for(int j = ; j <= N + ; j++)
a[i][j] = read();
Gauss();
return ;
}
洛谷P2455 [SDOI2006]线性方程组(高斯消元)的更多相关文章
- 洛谷P2455 [SDOI2006]线性方程组
高斯消元模板 要求输出解的情况(无穷解/无解) 1. 之前写的丑陋代码 #include <iostream> #include <cstdio> #include <c ...
- 【洛谷P3389】(模板)高斯消元
对于高斯消元法求解线性方程组, 我的理解就类似于我们在做数学题时的加减消元法, 只是把它写成一个通用的程序运算过程 对于一个线性方程组,我们从左往右每次将一列对应的行以下的元通过加减消元消去, 每个元 ...
- 洛谷P4035 [JSOI2008]球形空间产生器(高斯消元)
洛谷题目传送门 球啊球 @xzz_233 qaq 高斯消元模板题,关键在于将已知条件转化为方程组. 可以发现题目要求的未知量有\(n\)个,题目却给了我们\(n+1\)个点的坐标,这其中必有玄机. 由 ...
- 洛谷2973 [USACO10HOL]赶小猪Driving Out the Piggi… 概率 高斯消元
欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - 洛谷2973 题意概括 有N个城市,M条双向道路组成的地图,城市标号为1到N.“西瓜炸弹”放在1号城市,保证城 ...
- 洛谷P4457/loj#2513 [BJOI2018]治疗之雨(高斯消元+概率期望)
题面 传送门(loj) 传送门(洛谷) 题解 模拟赛的时候只想出了高斯消元然后死活不知道怎么继续--结果正解居然就是高斯消元卡常? 首先有个比较难受的地方是它一个回合可能不止扣一滴血--我们得算出\( ...
- 【洛谷U20626】gemo 容斥 FWT 高斯消元
题目大意 给你一个无向图,有\(m\)个询问,每次给你一个点\(x\)和一个点集\(S\),问你从\(x\)开始走,每次从一个点随机的走到与这个点相邻的点,问你访问\(S\)中每个点至少一次的期望步数 ...
- 洛谷P4035 球形空间产生器 [JSOI2008] 高斯消元
正解:高斯消元 解题报告: 链接! 昂开始看到以为是,高斯消元板子题? 开始很容易想到的是,虽然是多维但是可以类比二维三维列出式子嘛 但是高斯消元是只能处理一元问题的啊,,,辣怎么处理呢 对的这就是这 ...
- 洛谷P3389 高斯消元 / 高斯消元+线性基学习笔记
高斯消元 其实开始只是想搞下线性基,,,后来发现线性基和高斯消元的关系挺密切就一块儿在这儿写了好了QwQ 先港高斯消元趴? 这个算法并不难理解啊?就会矩阵运算就过去了鸭,,, 算了都专门为此写个题解还 ...
- 洛谷P4783 【模板】矩阵求逆(高斯消元)
题意 题目链接 Sol 首先在原矩阵的右侧放一个单位矩阵 对左侧的矩阵高斯消元 右侧的矩阵即为逆矩阵 // luogu-judger-enable-o2 #include<bits/stdc++ ...
随机推荐
- Vim入门基础知识集锦
1. 简介 Vim(Vi[Improved])编辑器是功能强大的跨平台文本文件编辑工具,继承自Unix系统的Vi编辑器,支持Linux/Mac OS X/Windows系统,利用它可以建立.修 ...
- TCP/IP数据包结构详解
一般来说,网络编程我们只需要调用一些封装好的函数或者组件就能完成大部分的工作,但是一些特殊的情况下,就需要深入的理解网络数据包的结构,以及协议分析.如:网络监控,故障排查等…… IP包是不安全的,但是 ...
- PAT_A1030#Travel Plan
Source: PAT A1030 Travel Plan (30 分) Description: A traveler's map gives the distances between citie ...
- luogu 2483 K短路 (可持久化左偏树)
题面: 题目大意:给你一张有向图,求1到n的第k短路 $K$短路模板题 假设整个图的边集为$G$ 首先建出以点$n$为根的,沿反向边跑的最短路树,设这些边构成了边集$T$ 那么每个点沿着树边走到点$n ...
- [51Nod1446] 限制价值树 (容斥+MT定理+折半搜索)
传送门 Description 有N个点(N<=40)标记为0,1,2,...N-1,每个点i有个价值val[i],如果val[i]=-1那么这个点被定义为bad,否则如果val[i] > ...
- [luogu2587 ZJOI2008] 泡泡堂 (贪心)
传送门 Description 第XXXX届NOI期间,为了加强各省选手之间的交流,组委会决定组织一场省际电子竞技大赛,每一个省的代表队由n名选手组成,比赛的项目是老少咸宜的网络游戏泡泡堂.每一场比赛 ...
- Jquery-自定义表单验证
jQuery自定义表单验证
- 《奋斗吧!菜鸟》 第八次作业:Alpha冲刺 Scrum meeting 3
项目 内容 这个作业属于哪个课程 任课教师链接 作业要求 https://www.cnblogs.com/nwnu-daizh/p/11012922.html 团队名称 奋斗吧!菜鸟 作业学习目标 A ...
- Python 实现 Excel 里单元格的读写与清空操作
#coding=utf-8 # coding=utf-8 作用是声明python代码的文本格式是utf-8,python按照utf-8的方式来读取程序. # 如果不加这个声明,无论代码中还是注释中有中 ...
- Spring 单例模式和多例模式
1.Spring中的对象默认都是 单例模式. 2.使用 @Scope("prototype") 注解来使对象成为多例模式. 3.通过@Autowired 注入的Service 或者 ...