zoj 3822 Domination 概率dp 2014牡丹江站D题
Domination
Time Limit: 8 Seconds Memory Limit: 131072 KB Special Judge
Edward is the headmaster of Marjar University. He is enthusiastic about chess and often plays chess with his friends. What's more, he bought a large decorative chessboard with N rows
and M columns.
Every day after work, Edward will place a chess piece on a random empty cell. A few days later, he found the chessboard was dominated by the chess pieces. That means there is
at least one chess piece in every row. Also, there is at least one chess piece in every column.
"That's interesting!" Edward said. He wants to know the expectation number of days to make an empty chessboard of N × M dominated. Please write a program to help
him.
Input
There are multiple test cases. The first line of input contains an integer T indicating the number of test cases. For each test case:
There are only two integers N and M (1 <= N, M <= 50).
Output
For each test case, output the expectation number of days.
Any solution with a relative or absolute error of at most 10-8 will be accepted.
Sample Input
2
1 3
2 2
Sample Output
3.000000000000
2.666666666667
题意:求保证n*m棋盘的每行每列都有棋子所用棋子的期望。
比赛的时候太紧张,竟然随便弄了个2维dp的想法就開始写,写出来才反应到2维的没办法描写叙述每种状态下的概率。然后立即改成三维。渣渣的概率公式又推错了!
!
确实是着急了。改了又改。还好最后过了··········庆幸之前做过概率dp的专题。
第一场亚洲赛,可圈可点
思路:dp[i][j][k]表示用了i个棋子,有j行,k列被占时的期望,则放一个棋子有4中情况:
1、放在已有行,列之中
2、放在已有行,新的列之中
3、放在已有列。新的行里
4。放在新的行和列里
初始化:dp[i][n][m]=0;(0<=i<=n*m)
dp[0][0][0]就是答案。
设每种状态的概率为pi,
转移方程:dp[i][j][k]=dp[i+1][j][k]*p1+dp[i+1][j+1][k]*p2+dp[i+1][j][k+1]*p3+dp[i+1][j+1][k+1]*p4+1;
当中:
p1=1.0*(j*k-i)/(n*m-i);
p2=1.0*(n-j)*k/(n*m-i);
p3=1.0*(m-k)*j/(n*m-i);
p4=1.0*(n-j)*(m-k)/(n*m-i);
怎么推的我就不说了。把放过的位置都统一到一側,非常easy。别的也没什么了,注意j*k>=i,概率dp求期望没做过非常难解出来,但做过了这类题事实上还真没有特别难的。
#include <iostream>
#include <cstring>
#include <cstdio>
using namespace std;
double dp[2505][55][55];
int main()
{
int t,n,m;
scanf("%d",&t);
while(t--){
scanf("%d%d",&n,&m);
memset(dp,0,sizeof(dp));
for(int i=n*m-1;i>=0;i--){
for(int j=n;j>=0;j--){
for(int k=m;k>=0;k--){
if(j==n&&k==m)continue;
if(j*k<i)continue;
double p1,p2,p3,p4;
p1=1.0*(j*k-i)/(n*m-i);
p2=1.0*(n-j)*k/(n*m-i);
p3=1.0*(m-k)*j/(n*m-i);
p4=1.0*(n-j)*(m-k)/(n*m-i);
dp[i][j][k]=dp[i+1][j][k]*p1+dp[i+1][j+1][k]*p2+dp[i+1][j][k+1]*p3+dp[i+1][j+1][k+1]*p4+1;
}
}
}
printf("%.10lf\n",dp[0][0][0]);
}
return 0;
}
zoj 3822 Domination 概率dp 2014牡丹江站D题的更多相关文章
- ZOJ 3822 Domination(概率dp 牡丹江现场赛)
题目链接:problemId=5376">http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=5376 Edward ...
- ZOJ 3822 Domination 概率dp 难度:0
Domination Time Limit: 8 Seconds Memory Limit: 131072 KB Special Judge Edward is the headm ...
- zoj 3822 Domination (概率dp 天数期望)
题目链接 参考博客:http://blog.csdn.net/napoleon_acm/article/details/40020297 题意:给定n*m的空棋盘 每一次在上面选择一个空的位置放置一枚 ...
- ZOJ 3822 Domination(概率dp)
一个n行m列的棋盘,每天可以放一个棋子,问要使得棋盘的每行每列都至少有一个棋子 需要的放棋子天数的期望. dp[i][j][k]表示用了k天棋子共能占领棋盘的i行j列的概率. 他的放置策略是,每放一次 ...
- zoj 3822(概率dp)
ZOJ Problem Set - 3822 Domination Time Limit: 8 Seconds Memory Limit: 131072 KB Special Ju ...
- ZOJ 3822 Domination 期望dp
Domination Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://acm.zju.edu.cn/onlinejudge/showProblem ...
- zoj 3822 Domination (可能性DP)
Domination Time Limit: 8 Seconds Memory Limit: 131072 KB Special Judge Edward is the headm ...
- ZOJ - 3822 Domination (DP)
Edward is the headmaster of Marjar University. He is enthusiastic about chess and often plays chess ...
- zoj3822 Domination 概率dp --- 2014 ACM-ICPC Asia Mudanjiang Regional Contest
一个n行m列的棋盘,每次能够放一个棋子.问要使得棋盘的每行每列都至少有一个棋子 须要的放棋子次数的期望. dp[i][j][k]表示用了k个棋子共能占据棋盘的i行j列的概率. 那么对于每一颗棋子,在现 ...
随机推荐
- DataFrame编程模型初谈与Spark SQL
Spark SQL在Spark内核基础上提供了对结构化数据的处理,在Spark1.3版本中,Spark SQL不仅可以作为分布式的SQL查询引擎,还引入了新的DataFrame编程模型. 在Spark ...
- MVC系列学习(十七)-过滤器
本次学习的文件结构如下 1.过滤器的几种表示方式 1.1将过滤器 加到方法上,作用范围为该方法 1.2将过滤器加到当前类上,作用范围为该类的所有方法 1.3添加全局过滤器,作用范围为所有方法 2.Ac ...
- Perforce 的基本使用教程
一.简介 P4是什么 二.基本使用方法 1.下载代码 下载最新代码 Get Latest Revision 下载指定commit代码 Get Revision 2. 检出代码 选择指定目录,右键 Ch ...
- 2017-5新版ionic3.1 新命令及一些常用命令
ionic3.1的新命令: # ionic cordova --help //== 查看命令 # ionic cordova resources // 其中 icon.png (1024*1024) ...
- 服务器端 CentOS 下配置 JDK 和 Tonmcat 踩坑合集
一.配置 JDK 时,在 /etc/profile 文件下配置环境变量,添加 #java environment export JAVA_HOME=/usr/java/jdk- export CL ...
- shell编程之grep命令的使用
大家在学习正则表达式之前,首先要明确一点,并把它牢牢记在心里,那就是: 在linux中,通配符是由shell解释的,而正则表达式则是由命令解释的,不要把二者搞混了.切记!!! 通常有三种文本处理工具/ ...
- 关于python中的staticmethod
python中的staticmethod 主要是方便将外部函数集成到类体中,美化代码结构,重点在不需要类实例化的情况下调用方法 如果你去掉staticmethod,在方法中加self也可以通过实例化访 ...
- js 时间 Fri Dec 12 2014 08:00:00 GMT+0800
第一种var d = new Date('Fri Dec 12 2014 08:00:00 GMT+0800'); ) + '-' + d.getDate() + ' ' + d.getHours() ...
- antiSMASH数据库:微生物次生代谢物合成基因组簇查询和预测
2017年4月28日,核酸研究(Nucleic Acids Research)杂志上,在线公布了一个可搜索微生物次生代谢物合成基因组簇的综合性数据库antiSMASH数据库 4.0版,前3版年均引用2 ...
- js的加法操作表
Number + Number -> 加法 Boolean + Number -> 加法 Boolean + Boolean -> 加法 Number + String -> ...