Domination


Time Limit: 8 Seconds      Memory Limit: 131072 KB      Special Judge


Edward is the headmaster of Marjar University. He is enthusiastic about chess and often plays chess with his friends. What's more, he bought a large decorative chessboard with N rows
and M columns.

Every day after work, Edward will place a chess piece on a random empty cell. A few days later, he found the chessboard was dominated by the chess pieces. That means there is
at least one chess piece in every row. Also, there is at least one chess piece in every column.

"That's interesting!" Edward said. He wants to know the expectation number of days to make an empty chessboard of N × M dominated. Please write a program to help
him.

Input

There are multiple test cases. The first line of input contains an integer T indicating the number of test cases. For each test case:

There are only two integers N and M (1 <= NM <= 50).

Output

For each test case, output the expectation number of days.

Any solution with a relative or absolute error of at most 10-8 will be accepted.

Sample Input

2
1 3
2 2

Sample Output

3.000000000000
2.666666666667

题意:求保证n*m棋盘的每行每列都有棋子所用棋子的期望。

比赛的时候太紧张,竟然随便弄了个2维dp的想法就開始写,写出来才反应到2维的没办法描写叙述每种状态下的概率。然后立即改成三维。渣渣的概率公式又推错了!

确实是着急了。改了又改。还好最后过了··········庆幸之前做过概率dp的专题。

第一场亚洲赛,可圈可点

思路:dp[i][j][k]表示用了i个棋子,有j行,k列被占时的期望,则放一个棋子有4中情况:

1、放在已有行,列之中

2、放在已有行,新的列之中

3、放在已有列。新的行里

4。放在新的行和列里

初始化:dp[i][n][m]=0;(0<=i<=n*m)

dp[0][0][0]就是答案。

设每种状态的概率为pi,

转移方程:dp[i][j][k]=dp[i+1][j][k]*p1+dp[i+1][j+1][k]*p2+dp[i+1][j][k+1]*p3+dp[i+1][j+1][k+1]*p4+1;

当中:

p1=1.0*(j*k-i)/(n*m-i);

p2=1.0*(n-j)*k/(n*m-i);

p3=1.0*(m-k)*j/(n*m-i);

p4=1.0*(n-j)*(m-k)/(n*m-i);

怎么推的我就不说了。把放过的位置都统一到一側,非常easy。别的也没什么了,注意j*k>=i,概率dp求期望没做过非常难解出来,但做过了这类题事实上还真没有特别难的。

#include <iostream>
#include <cstring>
#include <cstdio>
using namespace std;
double dp[2505][55][55];
int main()
{
int t,n,m;
scanf("%d",&t);
while(t--){
scanf("%d%d",&n,&m);
memset(dp,0,sizeof(dp));
for(int i=n*m-1;i>=0;i--){
for(int j=n;j>=0;j--){
for(int k=m;k>=0;k--){
if(j==n&&k==m)continue;
if(j*k<i)continue;
double p1,p2,p3,p4;
p1=1.0*(j*k-i)/(n*m-i);
p2=1.0*(n-j)*k/(n*m-i);
p3=1.0*(m-k)*j/(n*m-i);
p4=1.0*(n-j)*(m-k)/(n*m-i);
dp[i][j][k]=dp[i+1][j][k]*p1+dp[i+1][j+1][k]*p2+dp[i+1][j][k+1]*p3+dp[i+1][j+1][k+1]*p4+1;
}
}
}
printf("%.10lf\n",dp[0][0][0]);
}
return 0;
}

zoj 3822 Domination 概率dp 2014牡丹江站D题的更多相关文章

  1. ZOJ 3822 Domination(概率dp 牡丹江现场赛)

    题目链接:problemId=5376">http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=5376 Edward ...

  2. ZOJ 3822 Domination 概率dp 难度:0

    Domination Time Limit: 8 Seconds      Memory Limit: 131072 KB      Special Judge Edward is the headm ...

  3. zoj 3822 Domination (概率dp 天数期望)

    题目链接 参考博客:http://blog.csdn.net/napoleon_acm/article/details/40020297 题意:给定n*m的空棋盘 每一次在上面选择一个空的位置放置一枚 ...

  4. ZOJ 3822 Domination(概率dp)

    一个n行m列的棋盘,每天可以放一个棋子,问要使得棋盘的每行每列都至少有一个棋子 需要的放棋子天数的期望. dp[i][j][k]表示用了k天棋子共能占领棋盘的i行j列的概率. 他的放置策略是,每放一次 ...

  5. zoj 3822(概率dp)

    ZOJ Problem Set - 3822 Domination Time Limit: 8 Seconds      Memory Limit: 131072 KB      Special Ju ...

  6. ZOJ 3822 Domination 期望dp

    Domination Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://acm.zju.edu.cn/onlinejudge/showProblem ...

  7. zoj 3822 Domination (可能性DP)

    Domination Time Limit: 8 Seconds      Memory Limit: 131072 KB      Special Judge Edward is the headm ...

  8. ZOJ - 3822 Domination (DP)

    Edward is the headmaster of Marjar University. He is enthusiastic about chess and often plays chess ...

  9. zoj3822 Domination 概率dp --- 2014 ACM-ICPC Asia Mudanjiang Regional Contest

    一个n行m列的棋盘,每次能够放一个棋子.问要使得棋盘的每行每列都至少有一个棋子 须要的放棋子次数的期望. dp[i][j][k]表示用了k个棋子共能占据棋盘的i行j列的概率. 那么对于每一颗棋子,在现 ...

随机推荐

  1. Sqoop 产生背景(一)

    Sqoop 的产生主要源于: 1.目前很多使用hadoop技术的企业,有大量的数据存储在传统关系型数据库中. 2.早期由于工具的缺乏,hadoop与传统数据库之间的数据传输非常困难. 1)传统数据库中 ...

  2. JVM 优化之逃逸分析

    整理自 周志明<深入JVM> 1, 是JVM优化技术,它不是直接优化手段,而是为其它优化手段提供依据. 2,逃逸分析主要就是分析对象的动态作用域. 3,逃逸有两种:方法逃逸和线程逃逸.   ...

  3. 在Django中使用redis:包括安装、配置、启动。

    一.安装redis: 1.下载: wget http://download.redis.io/releases/redis-3.2.8.tar.gz 2.解压 tar -zxvf redis-.tar ...

  4. Java—break跳出语句

    在开发代码时,常常会产生这样的疑惑:break跳出语句是如何应用的呢? 使用break的场景有两种:一.switch语句中.二.循环语句. 这里就不介绍switch语句,主要说一下break在循环中的 ...

  5. python--9、进程及并发知识

    进程 一个文件的正在执行.运行过程就成为一个进程.执行多个程序,把程序文件都加载到内存,并且多个程序的内存空间隔离--空间上的复用. 遇到IO等待,切CPU到别的程序,提升效率.没有IO,一个程序占用 ...

  6. CSS——float

    float:就是在于布局,首先要介绍的是文档流(标准流),之后是浮动布局. 文档流:元素自上而下,自左而右,块元素独占一行,行内元素在一行上显示,碰到父集元素的边框换行. 浮动布局: 1.float: ...

  7. [Windows Server 2012] 安装Apache+PHP+MySQL

    ★ 欢迎来到[护卫神·V课堂],网站地址:http://v.huweishen.com★ 护卫神·V课堂 是护卫神旗下专业提供服务器教学视频的网站,每周更新视频.★ 本节我们将带领大家:Win2012 ...

  8. 类QQ账号生成阐述

    具体需求如下: 数字账号从60000到9999999999(类似qq号一样的东东) 用户获取数字账号为随机分配,也可递加分配,需要符合如下规则 特殊账号需要保留,不能分配给用户,比如:112233(连 ...

  9. day08-字符编码

    目录 计算机基础 启动应用程序 写文本的流程 Python解释器执行文件的原理 Python解释器与文本编辑器的区别 字符编码 字符编码发生在哪三个阶段 字符编码发展史与分类 总结 Python2与P ...

  10. if判断,while循环,for循环

    if判断 if判断其实就是让计算机模拟人的判断 if if 条件: 代码1 代码2 代码3 ... # 代码块(同一缩进级别的代码,例如代码1.代码2和代码3是相同缩进的代码,这三个代码组合在一起就是 ...