HDU 4259(Double Dealing-lcm(x1..xn)=lcm(x1,lcm(x2..xn))
Double Dealing
Time Limit: 50000/20000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 1924    Accepted Submission(s): 679
k players in the usual way: the top card to player 1, the next to player 2, the
kth to player k, the k+1st to player 1, and so on. Then pick up the cards – place player 1′s cards on top, then player 2, and so on, so that player
k’s cards are on the bottom. Each player’s cards are in reverse order – the last card that they were dealt is on the top, and the first on the bottom.
How many times, including the first, must this process be repeated before the deck is back in its original order?
n and k (1≤n≤800, 1≤k≤800). The input will end with a line with two 0s.
All possible inputs yield answers which will fit in a signed 64-bit integer.
1 3
10 3
52 4
0 0
1
4
13
pid=4258" target="_blank">4258
pid=4260" target="_blank">4260
pid=4261" target="_blank">4261
4262求置换群循环节的lcm
注意lcm(x1..xn)=lcm(x1,lcm(x2..xn)!=x1*..*xn/gcd
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<algorithm>
#include<functional>
#include<iostream>
#include<cmath>
#include<cctype>
#include<ctime>
using namespace std;
#define For(i,n) for(int i=1;i<=n;i++)
#define Fork(i,k,n) for(int i=k;i<=n;i++)
#define Rep(i,n) for(int i=0;i<n;i++)
#define ForD(i,n) for(int i=n;i;i--)
#define RepD(i,n) for(int i=n;i>=0;i--)
#define Forp(x) for(int p=pre[x];p;p=next[p])
#define Forpiter(x) for(int &p=iter[x];p;p=next[p])
#define Lson (x<<1)
#define Rson ((x<<1)+1)
#define MEM(a) memset(a,0,sizeof(a));
#define MEMI(a) memset(a,127,sizeof(a));
#define MEMi(a) memset(a,128,sizeof(a));
#define INF (2139062143)
#define F (100000007)
#define MAXN (1000000)
typedef long long ll;
ll mul(ll a,ll b){return (a*b)%F;}
ll add(ll a,ll b){return (a+b)%F;}
ll sub(ll a,ll b){return (a-b+(a-b)/F*F+F)%F;}
void upd(ll &a,ll b){a=(a%F+b%F)%F;}
char s[]="no solution\n"; class Math
{
public:
ll gcd(ll a,ll b){if (!b) return a;return gcd(b,a%b);}
ll abs(ll x){if (x>=0) return x;return -x;}
ll exgcd(ll a,ll b,ll &x, ll &y)
{
if (!b) {x=1,y=0;return a;}
ll g=exgcd(b,a%b,x,y);
ll t=x;x=y;y=t-a/b*y;
return g;
}
ll pow2(ll a,int b,ll p)
{
if (b==0) return 1;
if (b==1) return a;
ll c=pow2(a,b/2,p);
c=c*c%p;
if (b&1) c=c*a%p;
return c;
}
ll Modp(ll a,ll b,ll p)
{
ll x,y;
ll g=exgcd(a,p,x,y),d;
if (b%g) {return -1;}
d=b/g;x*=d,y*=d;
x=(x+abs(x)/p*p+p)%p;
return x;
}
int h[MAXN];
ll hnum[MAXN];
int hash(ll x)
{
int i=x%MAXN;
while (h[i]&&hnum[i]!=x) i=(i+1)%MAXN;
hnum[i]=x;
return i;
}
ll babystep(ll a,ll b,int p)
{
MEM(h) MEM(hnum)
int m=sqrt(p);while (m*m<p) m++;
ll res=b,ans=-1; ll uni=pow2(a,m,p);
if (!uni) if (!b) ans=1;else ans=-1; //特判
else
{ Rep(i,m+1)
{
int t=hash(res);
h[t]=i+1;
res=(res*a)%p;
}
res=uni; For(i,m+1)
{
int t=hash(res);
if (h[t]) {ans=i*m-(h[t]-1);break;}else hnum[t]=0;
res=res*uni%p;
} }
return ans;
}
}S; int a[10000+10];
bool b[10000+10];
int p[10000+10];
int main()
{
// freopen("C.in","r",stdin);
// freopen(".out","w",stdout); int n,k;
while(cin>>n>>k)
{
if (n+k==0) return 0;
int s=0;
For(j,k)
for(int i=n/k*k+j>n?n/k*k+j-k:n/k*k+j;i>=1;i-=k) a[++s]=i; // For(i,n) cout<<a[i]<<' '; int tot=0; MEM(b)
For(i,n)
{
if (!b[i])
{
int t=i; b[i]=1;
int len=1;
do {
b[t]=1;
t=a[t]; ++len;
// cout<<t<<endl; } while (!b[t]);
len--; p[++tot]=len;
}
} sort(p+1,p+1+tot);
tot=unique(p+1,p+1+tot)-(p+1); // For(i,tot) cout<<p[i]<<' '; ll ans=1;
For(i,tot) ans=ans/S.gcd(p[i],ans)*p[i]; cout<<ans<<endl; } return 0;
}
HDU 4259(Double Dealing-lcm(x1..xn)=lcm(x1,lcm(x2..xn))的更多相关文章
- hdu 4259 Double Dealing
		思路: 找每一个数的循环节,注意优化!! 每次找一个数的循环节时,记录其路径,下次对应的数就不用再找了…… 代码如下: #include<iostream> #include<cst ... 
- HDU 4259 - Double Dealing(求循环节)
		首先将扑克牌进行一次置换,然后分解出所有的循环节,所有循环节的扑克牌个数的最小公倍数即为答案 #include <stdio.h> #include <string.h> #i ... 
- HDOJ 4259 Double Dealing
		找每一位的循环节.求lcm Double Dealing Time Limit: 50000/20000 MS (Java/Others) Memory Limit: 32768/32768 K ... 
- hdu 4529 Double Dealing (置换群)
		# include <stdio.h> # include <algorithm> # include <string.h> using namespace std ... 
- 有N个正实数(注意是实数,大小升序排列) x1 , x2 ... xN,另有一个实数M。 需要选出若干个x,使这几个x的和与 M 最接近。 请描述实现算法,并指出算法复杂度
		题目:有N个正实数(注意是实数,大小升序排列) x1 , x2 ... xN,另有一个实数M. 需要选出若干个x,使这几个x的和与 M 最接近. 请描述实现算法,并指出算法复杂度. 代码如下: #in ... 
- HDU 1019 Least Common Multiple【gcd+lcm+水+多个数的lcm】
		Least Common Multiple Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Ot ... 
- hdu 1908 Double Queue
		题目连接 http://acm.hdu.edu.cn/showproblem.php?pid=1908 Double Queue Description The new founded Balkan ... 
- POJ-2429 GCD & LCM Inverse---给出gcd和lcm求原来两个数
		题目链接: https://cn.vjudge.net/problem/POJ-2429 题目大意: 给出两个数的gcd和lcm,求原来的这两个数(限定两数之和最小). 解题思路: 首先,知道gcd和 ... 
- HDU 1568  double 快速幂
		Fibonacci Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total S ... 
随机推荐
- the interview questions of sql server
			1.一道SQL语句面试题,关于group by 表内容: 2005-05-09 胜 2005-05-09 胜 2005-05-09 负 2005-05-09 负 2005-05-10 胜 2005-0 ... 
- Bootstrap3模态框Modal垂直居中样式
			1,Bootstrap 模态框插件Bootbox垂直居中样式: <!DOCTYPE html> <html lang="en"> <head> ... 
- CSS——◇demo
			核心思想:嵌套盒子中的◇超过父盒子的部分隐藏. 第一种写法: <!DOCTYPE html> <html> <head> <meta charset=&quo ... 
- unable to get system library for the project
			当向eclipse导入项目实例后,项目上出现红叉的错误提示,在项目属性里的Java Build Path里发现了错误提示复选选项: unable to get system library for t ... 
- CorelDRAW 中文官网 618 48H秒杀开始,多重好礼即刻开抢!
			618我有诚意,你呢? 不花钱的618,是残缺的618 给自己一个放肆shopping的机遇 活动力度不够大? 继续升级,终极体验 6月17日—6月18日 618疯狂48小时! 同志们,如果你错过 ... 
- centos安装指定mysql
			mysql下载地址:http://repo.mysql.com/ nginx下载地址 我下载是这个 http://nginx.org/packages/centos/7/noarch/RPMS/ngi ... 
- CPU重要性能参数
			内容来自http://www.360doc.com/content/18/1124/15/60810319_796935567.shtml CPU有几个重要的参数:主频.核心.线程.缓存.架构.那么他 ... 
- 小白年薪26万,为什么Python岗位薪资越来越高?
			人工智能和大数据概念的兴起,带动了Python的快速增长——Python语言逻辑简洁.入门简单.生态丰富,几乎成为几个新兴领域的不二选择.而除了这两个领域,Python还有更多的适用领域:爬虫.web ... 
- 零基础学习Linux培训,应该选择哪个培训班?
			云计算早已不是什么稀奇的概念,它的火爆让Linux运维工程师这个职业越来越重要.在当今各类云平台提供的系统中,Linux系统几乎毫无争议的独占鳌头,市场份额进一步扩张. 这也让Linux运维工程师职位 ... 
- 《Mysql - 到底可不可以使用 Join ?》
			一:Join 的问题? - 在实际生产中,使用 join 一般会集中在以下两类: - DBA 不让使用 Join ,使用 Join 会有什么问题呢? - 如果有两个大小不同的表做 join,应该用哪个 ... 
