Double Dealing

Time Limit: 50000/20000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)

Total Submission(s): 1924    Accepted Submission(s): 679

Problem Description
Take a deck of n unique cards. Deal the entire deck out to
k players in the usual way: the top card to player 1, the next to player 2, the
kth to player k, the k+1st to player 1, and so on. Then pick up the cards – place player 1′s cards on top, then player 2, and so on, so that player
k’s cards are on the bottom. Each player’s cards are in reverse order – the last card that they were dealt is on the top, and the first on the bottom.

How many times, including the first, must this process be repeated before the deck is back in its original order?

 
Input
There will be multiple test cases in the input. Each case will consist of a single line with two integers,
n and k (1≤n≤800, 1≤k≤800). The input will end with a line with two 0s.
 
Output
For each test case in the input, print a single integer, indicating the number of deals required to return the deck to its original order. Output each integer on its own line, with no extra spaces, and no blank lines between answers.
All possible inputs yield answers which will fit in a signed 64-bit integer.
 
Sample Input
1 3
10 3
52 4
0 0
 
Sample Output
1
4
13
 
Source
 
Recommend
liuyiding   |   We have carefully selected several similar problems for you:  4257 

pid=4258" target="_blank">4258 

pid=4260" target="_blank">4260 

pid=4261" target="_blank">4261 4262 

 

求置换群循环节的lcm

注意lcm(x1..xn)=lcm(x1,lcm(x2..xn)!=x1*..*xn/gcd

#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<algorithm>
#include<functional>
#include<iostream>
#include<cmath>
#include<cctype>
#include<ctime>
using namespace std;
#define For(i,n) for(int i=1;i<=n;i++)
#define Fork(i,k,n) for(int i=k;i<=n;i++)
#define Rep(i,n) for(int i=0;i<n;i++)
#define ForD(i,n) for(int i=n;i;i--)
#define RepD(i,n) for(int i=n;i>=0;i--)
#define Forp(x) for(int p=pre[x];p;p=next[p])
#define Forpiter(x) for(int &p=iter[x];p;p=next[p])
#define Lson (x<<1)
#define Rson ((x<<1)+1)
#define MEM(a) memset(a,0,sizeof(a));
#define MEMI(a) memset(a,127,sizeof(a));
#define MEMi(a) memset(a,128,sizeof(a));
#define INF (2139062143)
#define F (100000007)
#define MAXN (1000000)
typedef long long ll;
ll mul(ll a,ll b){return (a*b)%F;}
ll add(ll a,ll b){return (a+b)%F;}
ll sub(ll a,ll b){return (a-b+(a-b)/F*F+F)%F;}
void upd(ll &a,ll b){a=(a%F+b%F)%F;}
char s[]="no solution\n"; class Math
{
public:
ll gcd(ll a,ll b){if (!b) return a;return gcd(b,a%b);}
ll abs(ll x){if (x>=0) return x;return -x;}
ll exgcd(ll a,ll b,ll &x, ll &y)
{
if (!b) {x=1,y=0;return a;}
ll g=exgcd(b,a%b,x,y);
ll t=x;x=y;y=t-a/b*y;
return g;
}
ll pow2(ll a,int b,ll p)
{
if (b==0) return 1;
if (b==1) return a;
ll c=pow2(a,b/2,p);
c=c*c%p;
if (b&1) c=c*a%p;
return c;
}
ll Modp(ll a,ll b,ll p)
{
ll x,y;
ll g=exgcd(a,p,x,y),d;
if (b%g) {return -1;}
d=b/g;x*=d,y*=d;
x=(x+abs(x)/p*p+p)%p;
return x;
}
int h[MAXN];
ll hnum[MAXN];
int hash(ll x)
{
int i=x%MAXN;
while (h[i]&&hnum[i]!=x) i=(i+1)%MAXN;
hnum[i]=x;
return i;
}
ll babystep(ll a,ll b,int p)
{
MEM(h) MEM(hnum)
int m=sqrt(p);while (m*m<p) m++;
ll res=b,ans=-1; ll uni=pow2(a,m,p);
if (!uni) if (!b) ans=1;else ans=-1; //特判
else
{ Rep(i,m+1)
{
int t=hash(res);
h[t]=i+1;
res=(res*a)%p;
}
res=uni; For(i,m+1)
{
int t=hash(res);
if (h[t]) {ans=i*m-(h[t]-1);break;}else hnum[t]=0;
res=res*uni%p;
} }
return ans;
}
}S; int a[10000+10];
bool b[10000+10];
int p[10000+10];
int main()
{
// freopen("C.in","r",stdin);
// freopen(".out","w",stdout); int n,k;
while(cin>>n>>k)
{
if (n+k==0) return 0;
int s=0;
For(j,k)
for(int i=n/k*k+j>n?n/k*k+j-k:n/k*k+j;i>=1;i-=k) a[++s]=i; // For(i,n) cout<<a[i]<<' '; int tot=0; MEM(b)
For(i,n)
{
if (!b[i])
{
int t=i; b[i]=1;
int len=1;
do {
b[t]=1;
t=a[t]; ++len;
// cout<<t<<endl; } while (!b[t]);
len--; p[++tot]=len;
}
} sort(p+1,p+1+tot);
tot=unique(p+1,p+1+tot)-(p+1); // For(i,tot) cout<<p[i]<<' '; ll ans=1;
For(i,tot) ans=ans/S.gcd(p[i],ans)*p[i]; cout<<ans<<endl; } return 0;
}

HDU 4259(Double Dealing-lcm(x1..xn)=lcm(x1,lcm(x2..xn))的更多相关文章

  1. hdu 4259 Double Dealing

    思路: 找每一个数的循环节,注意优化!! 每次找一个数的循环节时,记录其路径,下次对应的数就不用再找了…… 代码如下: #include<iostream> #include<cst ...

  2. HDU 4259 - Double Dealing(求循环节)

    首先将扑克牌进行一次置换,然后分解出所有的循环节,所有循环节的扑克牌个数的最小公倍数即为答案 #include <stdio.h> #include <string.h> #i ...

  3. HDOJ 4259 Double Dealing

    找每一位的循环节.求lcm Double Dealing Time Limit: 50000/20000 MS (Java/Others)    Memory Limit: 32768/32768 K ...

  4. hdu 4529 Double Dealing (置换群)

    # include <stdio.h> # include <algorithm> # include <string.h> using namespace std ...

  5. 有N个正实数(注意是实数,大小升序排列) x1 , x2 ... xN,另有一个实数M。 需要选出若干个x,使这几个x的和与 M 最接近。 请描述实现算法,并指出算法复杂度

    题目:有N个正实数(注意是实数,大小升序排列) x1 , x2 ... xN,另有一个实数M. 需要选出若干个x,使这几个x的和与 M 最接近. 请描述实现算法,并指出算法复杂度. 代码如下: #in ...

  6. HDU 1019 Least Common Multiple【gcd+lcm+水+多个数的lcm】

    Least Common Multiple Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Ot ...

  7. hdu 1908 Double Queue

    题目连接 http://acm.hdu.edu.cn/showproblem.php?pid=1908 Double Queue Description The new founded Balkan ...

  8. POJ-2429 GCD & LCM Inverse---给出gcd和lcm求原来两个数

    题目链接: https://cn.vjudge.net/problem/POJ-2429 题目大意: 给出两个数的gcd和lcm,求原来的这两个数(限定两数之和最小). 解题思路: 首先,知道gcd和 ...

  9. HDU 1568 double 快速幂

    Fibonacci Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total S ...

随机推荐

  1. sql server 无法创建数据库,错误代码:1807

    SQL Server 不能创建数据库,发生错误:1807 :未能获得数据库 'model' 上的排它锁.请稍后重试操作. declare   @sql   varchar(100)     while ...

  2. C#语言最基础的数组和集合

    数组的书写格式:数据类型[]变量名=new 数据类型[长度]: 集合的书写格式:List<变量类型>变量名=new List<变量类型>(): 集合添加元素:变量名.Add(数 ...

  3. service里设置websocket心跳并向fragment发送数据

    垃圾小白写了自己看的 /** * service 文件 */ public class SocketService extends Service { //自己定义接口用来传参 private sta ...

  4. 03-Servlet 体系结构知识梳理

    一.Servlet体系结构 Java Web应用是基于Servlet规范运行,Servlet顶层类的关联如下图: 从图可看出,Servlet规范基本围绕这几个类运行,其中,与Servlet主动关联的有 ...

  5. html5——web字体

    基本介绍 1.自定义网页特殊字体,无需考虑用户电脑上是否安装了此特殊字体,从此把特殊字体处理成图片的时代便成为了过去. 2.支持程度比较好,甚至IE低版本浏览器也能支持. 3.web字体的大小鉴定是字 ...

  6. [系统]no such partition

    电脑系统是win8.1+ubuntu14.2,为了卸载ubuntu,安装CentOS,于是在win8.1下把ubuntu的分区给删除了,重启,出现no such partition grub resc ...

  7. [入门指南]-技术学习-Ebean

    占坑 官网

  8. MFC cstring 型转化成 double型

    cstring szNum; GetDlgItemText(IDC_EDIT1, szNum); double Num; Num = _ttol(szNum); 转化成长整型 Num = _tstof ...

  9. Vivaldi解决flash插件问题

    Vivaldi浏览器 Vivaldi是Opera联合创始人.前CEO谭咏文(Jon von Tetzchner)2015年1月27日发布的一款浏览器,具有个性化的笔记功能,带有迷你屏幕截图的书签,以及 ...

  10. Django REST framework 渲染器、版本

    渲染器.版本: # settings.py REST_FRAMEWORK = { "DEFAULT_RENDERER_CLASSES": [ "rest_framewor ...