poj3352Road Construction 边双连通+伪缩点
/*
对于边双连通分支,求法更为简单。 仅仅需在求出全部的桥以后,把桥边删除。\
原图变成了多个连通块,则每一个连通块就是一个边双连通分支。 桥不属于不论什么
一个边双连通分支,其余的边和每一个顶点都属于且仅仅属于一个边双连通分支。
一个有桥的连通图,怎样把它通过加边变成边双连通图?方法为首先求出全部的桥,
然后删除这些桥边,剩下的每一个连通块都是一个双连通子图。把每一个双连通子图收缩为一个顶点,
再把桥边加回来,最后的这个图一定是一棵树。边连通度为1。
统计出树中度为1的节点的个数,即为叶节点的个数,记为leaf。 则至少在树上加入(leaf+1)/2条边。
就能使树达到边二连通。所以至少加入的边数就是(leaf+1)/2。详细方法为,首先把两个近期公共祖先最远
的两个叶节点之间连接一条边,这样能够把这两个点到祖先的路径上全部点收缩到一起。
由于一个形成的环一定是双连通的。然后再找两个近期公共祖先最远的两个叶节点,这样一对一对找完,
恰好是(leaf+1)/2次。把全部点收缩到了一起。
*/
/*
(1) n 为顶点数, 标号从 1 開始
(2) c 为原图的邻接表, g 为 E_BCC 图的邻接表
(3) num[u] 表示原图中的点 u 属于新图中的第 num[u] 个 E_BCC
(4) edge[] 存储全部的桥
(5) 注意 pool[M] 要开得足够大以容得下新旧两个图中全部的边
(6) E_BCC 图中去掉了自环 ( 显然不存在多重边 )
*/
#include <iostream>
#include <cstdio>
#include <cstring>
using namespace std;
const int N = 11115;
const int M = 2000005; struct List {
int v, id;
List *next;
} pool[M], *c[N], *g[N], *pp;
//c 为原图的邻接表, g 为 E_BCC 图的邻接表
//注意 pool[M] 要开得足够大以容得下新旧两个图中全部的边
inline void add_edge(int u, int v, int id, List *c[])
{
pp->v = v;
pp->id = id;
pp->next = c[u];
c[u] = pp ++;
} struct Edge {
int u, v;
} edge[M];
//edge[] 存储全部的桥,u,v为桥的两个顶点
int n, m, label, tot, top;
int low[N], dfn[N], num[N], stack[N];
bool eflag[M];
//label时间戳,tot连通块数
//dfn用来保存时间戳(次序)编号,low保存顶点i或i的子树最早的次序编号
//num[u] 表示原图中的点 u 属于新图中的第 num[u] 个 E_BCC
void E_BCC_VISIT(int u)
{
low[u] = dfn[u] = label ++;
stack[++ top] = u;
for(List *p = c[u]; p; p = p->next) {
int v = p->v;
if(eflag[p->id]) continue;
eflag[p->id] = true;
//if(dfn[v]) { low[u] <?= dfn[v]; continue; }
if(dfn[v]){
if(low[u] > dfn[v]) low[u] = dfn[v];
continue;
}
E_BCC_VISIT(v);
//low[u] <?= low[v];
if(low[u] > low[v]) low[u]=low[v];
if(low[v] > dfn[u]) {
edge[m].u = u;//第m条桥的两个顶点u,v
edge[m ++].v = v;
++ tot;
do {
num[stack[top]] = tot;
} while( stack[top --] != v );
}
}
}
void E_BCC()
{
int i;
tot = 0;
m = 0;/////
for(i = 1; i <= n; ++ i) dfn[i] = 0, num[i] = -1;
for(i = 0; i < m; ++ i) eflag[i] = false;
for(i = 1; i <= n; ++ i)
if(dfn[i] == 0) {
label = 1;
top = -1;
E_BCC_VISIT(i);
++ tot;
while( top >= 0 ) {
num[stack[top]] = tot;
-- top;
}
}
for(i = 1; i <= tot; ++ i) g[i] = NULL;
//for(i = 1; i <= n; ++ i) {//缩点,这题用不着
// int u = num[i];//u为一个双连通分量
//for(List *p = c[i]; p; p = p->next) {
// int v = num[p->v];//v是还有一个双连通分量
//if(u != v) add_edge(u, v, 0, g);//在两个分量间建一条边
//}
//}
} int main()
{
int i, j, k;
while( scanf("%d %d", &n, &m) == 2 ) {
for(i = 1; i <= n; ++ i) c[i] = NULL;
pp = pool;
for(k = 0; k < m; ++ k) {
scanf("%d %d", &i, &j);
add_edge(i, j, k, c);
add_edge(j, i, k, c);
}
E_BCC();
if(m == 0){cout<<0<<endl; continue;}
int du[N]={0};
for(int i=0;i<m;i++){//桥即为联通块的之间的边,这里处理伪缩点
//cout<<num[edge[i].u]<<' '<<num[edge[i].v]<<endl;
du[num[edge[i].u]]++;//要用num[]映射到连通块编号上计算联通块的度
du[num[edge[i].v]]++;
}
int leaf=0;//树叶
//cout<<tot<<endl<<m<<endl;
for(int i=1;i<=tot;i++) if(du[i]==1)leaf++;
cout<<(leaf+1)/2<<endl;
//for(int i=0;i<=m;i++)printf("num[%d]:%d\n",i,num[i]);
//printf("tot:%d m:%d\n",tot,m);
}
return 0;
}
poj3352Road Construction 边双连通+伪缩点的更多相关文章
- POJ3352Road Construction(构造双连通图)sdut2506完美网络
构造双连通图:一个有桥的连通图,如何把它通过加边变成边双连通图? 一个有桥的连通图,如何把它通过加边变成边双连通图?方法为首先求出所有的桥,然后删除这些桥边,剩下的每个连通块都是一个双连通子图.把每个 ...
- HDU4612Warm up 边双连通 Tarjan缩点
N planets are connected by M bidirectional channels that allow instant transportation. It's always p ...
- 图论--边双连通V-DCC缩点
// tarjan算法求无向图的割点.点双连通分量并缩点 #include<iostream> #include<cstdio> #include<cstring> ...
- 图论--双连通E-DCC缩点模板
// tarjan算法求无向图的桥.边双连通分量并缩点 #include<iostream> #include<cstdio> #include<cstring> ...
- POJ 3177 Redundant Paths POJ 3352 Road Construction(双连接)
POJ 3177 Redundant Paths POJ 3352 Road Construction 题目链接 题意:两题一样的.一份代码能交.给定一个连通无向图,问加几条边能使得图变成一个双连通图 ...
- POJ-3352 Road Construction,tarjan缩点求边双连通!
Road Construction 本来不想做这个题,下午总结的时候发现自己花了一周的时间学连通图却连什么是边双连通不清楚,于是百度了一下相关内容,原来就是一个点到另一个至少有两条不同的路. 题意:给 ...
- poj 3352 Road Construction【边双连通求最少加多少条边使图双连通&&缩点】
Road Construction Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 10141 Accepted: 503 ...
- hdu 4612 Warm up 双连通缩点+树的直径
首先双连通缩点建立新图(顺带求原图的总的桥数,事实上因为原图是一个强连通图,所以桥就等于缩点后的边) 此时得到的图类似树结构,对于新图求一次直径,也就是最长链. 我们新建的边就一定是连接这条最长链的首 ...
- POJ 3177 Redundant Paths (边双连通+缩点)
<题目链接> <转载于 >>> > 题目大意: 有n个牧场,Bessie 要从一个牧场到另一个牧场,要求至少要有2条独立的路可以走.现已有m条路,求至少要新 ...
随机推荐
- Android Activity组件的启动过程
0.总图 1.总图中的第一步,Laucher主线程向ActivityManagerService进程发出START_ACTIVITY_TRANSACTION 如图:第一步 ~/Android/fram ...
- [C++设计模式] iterator 迭代器模式
迭代器模式定义:提供一种方法顺序訪问一个聚合对象中各个元素,而又不须要暴露该对象. 迭代器分内部迭代器和外部迭代器.内部迭代器与对象耦合紧密,不推荐使用. 外部迭代器与聚合容器的内部对象松耦合,推荐使 ...
- HTTP Error 500.19
HTTP Error 500.19 - Internal Server Error The requested page cannot be accessed because the related ...
- mysqli简介
mysqli简介 PHP MySQLi 简介 PHP MySQLi = PHP MySQL Improved! MySQLi 函数允许您访问 MySQL 数据库服务器. 注释:MySQLi 扩展被设计 ...
- hdoj--3594--Cactus(tarjan)
Cactus Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) Total Sub ...
- Android: HowTo设置app不被系统kill掉
有一种方法可以设置app永远不会被kill,AndroidManifest.xml 中添加: android:persistent="true" 适用于放在/system/app下 ...
- SQLSERVER 链接服务器执行存储过程
1.创建链接服务器 exec sp_addlinkedserver 'server_tmp','','SQLOLEDB','192.168.1.1' -- server_tmp 为别名 exec sp ...
- DDD中Dto领域驱动设计概述,摘自《NET企业级应用架构设计》
- LeetCode Golang 8. 字符串转换整数 (atoi)
8. 字符串转换整数 (atoi) 首先,该函数会根据需要丢弃无用的开头空格字符,直到寻找到第一个非空格的字符为止. 当我们寻找到的第一个非空字符为正或者负号时,则将该符号与之后面尽可能多的连续数字组 ...
- day06-2 基本运算符(解压缩)
目录 运算符 算数运算符 比较运算符 赋值运算符 逻辑运算符 运算规则 成员运算符 身份运算符 Python运算符优先级 链式赋值(必考) 交叉赋值(必考) 解压缩(必考) 运算符 算数运算符 进行算 ...