基于One-Class的矩阵分解方法
在矩阵分解中。 有类问题比較常见,即矩阵的元素仅仅有0和1。 相应实际应用中的场景是:用户对新闻的点击情况,对某些物品的购买情况等。
基于graphchi里面的矩阵分解结果不太理想。调研了下相关的文献,代码主要实现了基于PLSA的分解方法,具体请參考后面的參考文献
#!/usr/local/bin/python
#-*-coding:utf-8-*-
import sys
import math
import numpy as np
import string
import random
"""
reimplement algorithm of aspect_bernoulli.m
which may be usefull in one class matrix factorization
"""
"""
get matrix that all elements are 1
"""
def get_unit_matrix(row, col):
return np.ones((row, col), dtype=int)
def norm_zero(array):
col, row = array.shape
for c in xrange(col):
for r in xrange(row):
if array[c][r] < 0.000001:
array[c][r] = 0.000001
return array
"""
X: binary data matrix, each column is an observation
K: number of aspects(components) to estimate
iter: max number of iterations to do
ufile: save matrix result u
vfile: save martix result v
"""
def run_bernoulli(X, K, iter, ufile, vfile):
X = np.array(X)
T,N = X.shape
S = np.random.rand(K, N)
S_SUM = np.add.reduce(S)
S_SUM_EXT = np.tile(S_SUM, (K, 1))
S = S/S_SUM_EXT
A = np.random.rand(T, K)
UM_A = get_unit_matrix(T, K)
A_TEMP = UM_A - A
UM_X = get_unit_matrix(T, N)
X_TEMP = UM_X - X
l = []
for i in xrange(iter):
#STEP1
AS = np.dot(A, S) #A*S
AS_NORM = norm_zero(AS) #max(eps, A*S)
X_AS_NORM = X/AS_NORM #(X./max(eps, A*S))
FIRST = np.dot(A.T, X_AS_NORM) #A'*(X./max(eps, A*S))
S_1 = S*FIRST #S.*(A'*(X./max(eps, A*S)))
AS_TEMP = UM_X - AS #1-A*S
AS_TEMP_NORM = norm_zero(AS_TEMP) #max(eps, 1-A*S)
X_AS_TEMP_NORM = X_TEMP/AS_TEMP_NORM #(1-x)./max(eps, 1-A*S)
SECOND = np.dot(A_TEMP.T, X_AS_TEMP_NORM) #(1-A)'*((1-x)./max(eps, 1-A*S))
S_2 = S*SECOND #S.*((1-A)'*((1-x)./max(eps, 1-A*S)))
S = S_1 + S_2 #S.*(A'*(X./max(eps, A*S))) + S.*((1-A)'*((1-x)./max(eps, 1-A*S)))
S_SUM = np.add.reduce(S)
S_SUM_EXT = np.tile(S_SUM, (K, 1))
S = S/S_SUM_EXT
#STEP2
AS = np.dot(A, S) #A*S
AS_NORM = norm_zero(AS) #max(eps, A*S)
X_AS_NORM = X/AS_NORM #(X./max(eps, A*S))
A = A* np.dot(X_AS_NORM, S.T)
#STEP3
A_TEMP_S = np.dot(A_TEMP, S) #A1*S
A_TEMP_S_NORM = norm_zero(A_TEMP_S) #max(eps, A1*S)
A_TEMP_S_NORM_X = X_TEMP/A_TEMP_S_NORM #(1-X)./max(eps, A1*S)
A_TEMP = A_TEMP * (np.dot(A_TEMP_S_NORM_X, S.T)) #A1.*(((1-x)./max(eps, A1*S))*S')
A = A/(A + A_TEMP) #A./(A+A1)
A_TEMP = UM_A - A #1-A
#STEP4 compute loss function
AS = np.dot(A, S) #A*S
AS_NORM = norm_zero(AS) #max(eps, A*S)
AS_NORM = np.log(AS_NORM) #log(max(eps, A*S))
LOSS_FIRST = X * AS_NORM # X.*log(max(eps, A*S))
AS_TEMP = UM_X - AS #1-A*S
AS_TEMP_NORM = norm_zero(AS_TEMP) #max(eps, 1-A*S)
AS_TEMP_NORM = np.log(AS_TEMP_NORM) #log(max(eps, 1-A*S))
LOSS_SECOND = X_TEMP * AS_TEMP_NORM #(1-X).*log(max(eps, 1-A*S))
LOSS = LOSS_FIRST + LOSS_SECOND #X.*log(max(eps, A*S)) + (1-X).*log(max(eps, 1-A*S))
LOSS_SUM = np.add.reduce(LOSS) #sum(X.*log(max(eps, A*S)) + (1-X).*log(max(eps, 1-A*S)))
loss = np.sum(LOSS_SUM)/(N*T) #sum(sum(X.*log(max(eps, A*S)) + (1-X).*log(max(eps, 1-A*S))))/(N*T)
l.append(loss)
rmse = estimate_rmse(X, AS)
if i > 1:
if math.fabs(l[i] - l[i-1]) < 0.00001:break
print "iter = %d, loss = %f, rmse = %f"%(i, loss, rmse)
np.savetxt(ufile, A)
np.savetxt(vfile, S)
參考文献:
1. The aspect Bernoulli model: multiple causes of presences and absences (文章算法相应文章)
2. One-Class Matrix Completion with Low-Density Factorizations
基于One-Class的矩阵分解方法的更多相关文章
- SVD++:推荐系统的基于矩阵分解的协同过滤算法的提高
1.背景知识 在讲SVD++之前,我还是想先回到基于物品相似的协同过滤算法.这个算法基本思想是找出一个用户有过正反馈的物品的相似的物品来给其作为推荐.其公式为:
- 简单的基于矩阵分解的推荐算法-PMF, NMF
介绍: 推荐系统中最为主流与经典的技术之一是协同过滤技术(Collaborative Filtering),它是基于这样的假设:用户如果在过去对某些项目产生过兴趣,那么将来他很可能依然对其保持热忱.其 ...
- 【RS】Sparse Probabilistic Matrix Factorization by Laplace Distribution for Collaborative Filtering - 基于拉普拉斯分布的稀疏概率矩阵分解协同过滤
[论文标题]Sparse Probabilistic Matrix Factorization by Laplace Distribution for Collaborative Filtering ...
- FAST MONTE CARLO ALGORITHMS FOR MATRICES II (快速的矩阵分解策略)
目录 问题 算法 LINEARTIMESVD 算法 CONSTANTTIMESVD 算法 理论 算法1的理论 算法2 的理论 代码 Drineas P, Kannan R, Mahoney M W, ...
- 推荐算法之用矩阵分解做协调过滤——LFM模型
隐语义模型(Latent factor model,以下简称LFM),是推荐系统领域上广泛使用的算法.它将矩阵分解应用于推荐算法推到了新的高度,在推荐算法历史上留下了光辉灿烂的一笔.本文将对 LFM ...
- 【Math for ML】矩阵分解(Matrix Decompositions) (下)
[Math for ML]矩阵分解(Matrix Decompositions) (上) I. 奇异值分解(Singular Value Decomposition) 1. 定义 Singular V ...
- 推荐系统(recommender systems):预测电影评分--构造推荐系统的一种方法:低秩矩阵分解(low rank matrix factorization)
如上图中的predicted ratings矩阵可以分解成X与ΘT的乘积,这个叫做低秩矩阵分解. 我们先学习出product的特征参数向量,在实际应用中这些学习出来的参数向量可能比较难以理解,也很难可 ...
- ML.NET 示例:推荐之One Class 矩阵分解
写在前面 准备近期将微软的machinelearning-samples翻译成中文,水平有限,如有错漏,请大家多多指正. 如果有朋友对此感兴趣,可以加入我:https://github.com/fei ...
- ML.NET 示例:推荐之矩阵分解
写在前面 准备近期将微软的machinelearning-samples翻译成中文,水平有限,如有错漏,请大家多多指正. 如果有朋友对此感兴趣,可以加入我:https://github.com/fei ...
随机推荐
- 人人都能当大厨的语音做菜神器——demo试用
开发一款语音做菜软件的想法在我脑海里闪烁了非常久,一直苦于没有时间.趁着这几天老板的项目接近了尾声,我也有时间把我当初的想法付诸于实践. 可能有朋友对我的想法还不甚了解,我这里简介一下,具体的介绍就请 ...
- 怎样在同一台电脑使用不同的账号提交到同一个github仓库
近期这段时间使用github.有时在公司办公,想要用git提交代码到自己的github仓库,提交是显示的作者是自己在公司的账户.而不是自己的github账户.这就相当于提交到github的代码不是自己 ...
- Python 加载数据
1. numpy data = np.loadtxt('./data/txtdata.csv') ⇒ data 是 numpy.ndarray 类型
- 解决:[WARNING] fpm_children_bury(), line 215: child 2736 (pool default) exited on signal 15 SIGTERM after 59.588363 seconds from start
试用Nginx + PHP FastCGI 做WEB服务器,运行了几个月的时间,烦恼的是经常碰到Nginx 502 Bad Gateway 这个问题. 参考了很多修改办法,这个502的问题一直存在,今 ...
- Spark RDD概念学习系列之RDD的五大特征
不多说,直接上干货! RDD的五大特征 分区--- partitions 依赖--- dependencies() 计算函数--- computer(p,context) 分区策略(Pair RDD) ...
- 清北集训Day6T1(生成函数)
听rqy说可以用生成函数做,感觉比较有意思 我们考虑在DP转移的时候, $5,7,9$这三个数是没有限制的 因此他们出现的次数用01串表示的话就是$1111111111111111......$ $3 ...
- 对ListView的Item子控件监听并跳转页面
public class MyAdapteforOwner extends BaseAdapter{ List<OwnerDevice>datas; private Context con ...
- call使用场景
在javascript OOP中,定义: function cat(){ } cat.prototype={ food:"fish", say: funct ...
- thrift - C#(CSharp)客户端连接池(ConnectionPool)
调用示例: var tran = ThriftPool.Instance().BorrowInstance(); TProtocol protocol = new TBinaryProtoco ...
- php语法学习:轻松看懂PHP语言
基础语法 开头结尾 PHP脚本以 "<?php " 开头以 "?>" 结尾 <!DOCTYPE html> <html>&l ...