[luogu 2568] GCD (欧拉函数)
题目描述
给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的数对(x,y)有多少对.
输入输出格式
输入格式:
一个整数N
输出格式:
答案
输入样例#1:
4
输出样例#1:
4
说明
对于样例(2,2),(2,4),(3,3),(4,2)
1<=N<=10^7
上午用这道题考试(虽然略有区别不过差不多)qwq
用欧拉函数乱推。。。
code:(ac代码)
#include<cstdio>
#define LL long long
const int N=10000010;
int n,cnt;
int pri[N],phi[N];
LL ans;
LL qphi[N];
bool vis[N];
void init() {
vis[1]=phi[1]=1;
for(int i=2;i<=n;i++) {
if(!vis[i]) pri[++cnt]=i,phi[i]=i-1;
for(int j=1;j<=cnt && pri[j]*i<=n;j++) {
vis[pri[j]*i]=1;
if(!(i%pri[j])) {phi[i*pri[j]]=phi[i]*pri[j];break;}
else phi[i*pri[j]]=phi[i]*phi[pri[j]];
}
}
for(int i=1;i<=n;i++) qphi[i]=qphi[i-1]+phi[i];//前缀和
}
int main() {
scanf("%d",&n);
init();
for(int i=1;i<=cnt;i++)
ans+=(qphi[(n-n%pri[i])/pri[i]]<<1)-1;
//稍微解释:因为每次枚举中有一种情况为(pi,pi) (pi为范围内第i个素数) 应被算作一种其余的都应乘2
//也可以刚开始按乘2算出来最后减去素数个数
printf("%lld",ans);
return 0;
}
code:(考试原代码)
PS:由于考题与本题略有不同不能过本题而且懒得改了,此处仅为记录原考题(即(2,4)与(4,2)视作一种情况)的代码
#include<cstdio>
#include<iostream>
#include<algorithm>
#include<cmath>
#include<cstring>
#include<ctime>
#define LL long long
using namespace std;
const int N=10000010;
int n,cnt;
LL ans;
int pri[N/10],phi[N];
LL qphi[N];
bool vis[N];
int gcd(int a,int b) {//原始暴力算法(n^2)
return !b?a:gcd(b,a%b);
}
void init() {//欧拉筛
vis[1]=1;phi[1]=1;
for(register int i=2;i<=n;i++) {
if(!vis[i]) pri[++cnt]=i,phi[i]=i-1;
for(register int j=1;j<=cnt && pri[j]*i<=n;j++) {
vis[pri[j]*i]=1;
if(i%pri[j]==0) {
phi[i*pri[j]]=phi[i]*pri[j];
break;
}
else phi[i*pri[j]]=phi[i]*phi[pri[j]];
}
}
for(int i=1;i<=n;i++) qphi[i]=qphi[i-1]+phi[i];
}
int get(int x) {//高级暴力的二分
if((x<<1)>n) return 0;
int l=1,r=cnt;
while(l<r) {
int mid=(l+r+1)>>1;
if(pri[mid]*x<=n) l=mid;
else r=mid-1;
}
return l;
}
int main() {
// freopen("gcd.in","r",stdin);
// freopen("gcd.out","w",stdout);
scanf("%d",&n);
// int be=clock();
init();
// for(register int i=1;i<=n;i++) {//比较快的暴力算法(nlogn)。。
// int x=get(i);
// ans+=x*phi[i];
// }
// printf("%lld",ans);
// ans=0;cout<<endl;
for(register int i=1;i<=cnt;i++) {//能过的~~暴力~~算法(n)
int x=(n-n%pri[i]);
ans+=qphi[x/pri[i]];
}
// cout<<cnt<<endl;
printf("%lld",ans);
// int ed=clock();
// cout<<endl<<ed-be;
return 0;
}
[luogu 2568] GCD (欧拉函数)的更多相关文章
- BZOJ 2818: Gcd [欧拉函数 质数 线性筛]【学习笔记】
2818: Gcd Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 4436 Solved: 1957[Submit][Status][Discuss ...
- POJ 2773 Happy 2006【GCD/欧拉函数】
根据欧几里德算法,gcd(a,b)=gcd(a+b*t,b) 如果a和b互质,则a+b*t和b也互质,即与a互质的数对a取模具有周期性. 所以只要求出小于n且与n互质的元素即可. #include&l ...
- HDU 2588 GCD (欧拉函数)
GCD Time Limit: 1000MS Memory Limit: 32768KB 64bit IO Format: %I64d & %I64u Submit Status De ...
- Bzoj-2818 Gcd 欧拉函数
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2818 题意:给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的数对(x ...
- BZOJ2818: Gcd 欧拉函数求前缀和
给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的数对(x,y)有多少对. 如果两个数的x,y最大公约数是z,那么x/z,y/z一定是互质的 然后找到所有的素数,然后用欧拉函数求一 ...
- hdu2588 gcd 欧拉函数
GCD Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...
- HDU 1695 GCD 欧拉函数+容斥定理
输入a b c d k求有多少对x y 使得x在a-b区间 y在c-d区间 gcd(x, y) = k 此外a和c一定是1 由于gcd(x, y) == k 将b和d都除以k 题目转化为1到b/k 和 ...
- HDU 1695 GCD 欧拉函数+容斥定理 || 莫比乌斯反演
GCD Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...
- HDU 1695 GCD (欧拉函数,容斥原理)
GCD Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total Submis ...
- hdu 1695 GCD (欧拉函数+容斥原理)
GCD Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...
随机推荐
- java深入的单例模式
在GoF的23种设计模式中,单例模式是比较简单的一种.然而,有时候越是简单的东西越容易出现问题.下面就单例设计模式详细的探讨一下. 所谓单例模式,简单来说,就是在整个应用中保证只有一个类的实例存在 ...
- VUEX 总结
What is Vuex? vuex是一个专为Vue.js应用程序开发的状态管理模式.他采用集中式储存管理应用的所有组件的状态,并以相应的规则保证状态以一种可预测的方式发生变换 VUEX并不限制你的代 ...
- OA项目知识总结
struts文件配置 --------------------------------------------------------- 配置c3po链接池 --------------------- ...
- <constant name="struts.devMode" value="true" />
<constant name="struts.devMode" value="true" /> 当vlaue为true,表示struts处于开发模式 ...
- mysql修改配置文件
在Apache, PHP, MySQL的体系架构中,MySQL对于性能的影响最大,也是关键的核心部分.对于Discuz!论坛程序也是如此,MySQL的设置是否合理优化,直接影响到论坛的速度和承载量!同 ...
- C#中的Attribute定义及用法
1.Attribute定义 公共语言运行时允许添加类似关键字的描述声明,叫做attributes, 它对程序中的元素进行标注,如类型.字段.方法和属性等.Attributes和Microsoft .N ...
- Android设计模式(三)--装饰模式
1.定义: Attach additional responsibilities to an object dynamically keeping the same interface. Decoa ...
- [React Router] Create a ProtectedRoute Component in React Router (setState callback to force update)
In this lesson we'll create a protected route just for logged in users. We'll combine a Route with a ...
- C#高级编程八十三天----程序集的含义
程序集的含义 一.程序集是包括一个或多个类型定义文件和资源文件的集合.它同意我们分析可重用类型的逻辑表示和物理表示. 相当于你定义了一个项目XXProject,项目存在非常多文件(类,窗口,接口,资源 ...
- audio_coding模块分析和audio_conference_mixer模块分析
audio_coding 1. 主要接口 AudioCodingModuleImpl::RegisterReceiveCodec 初始化Codec AudioCodingModul ...