题目描述

给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的数对(x,y)有多少对.

输入输出格式

输入格式:

一个整数N

输出格式:

答案

输入样例#1:

4

输出样例#1:

4

说明

对于样例(2,2),(2,4),(3,3),(4,2)

1<=N<=10^7

上午用这道题考试(虽然略有区别不过差不多)qwq

用欧拉函数乱推。。。

code:(ac代码)

#include<cstdio>
#define LL long long const int N=10000010;
int n,cnt;
int pri[N],phi[N];
LL ans;
LL qphi[N];
bool vis[N]; void init() {
vis[1]=phi[1]=1;
for(int i=2;i<=n;i++) {
if(!vis[i]) pri[++cnt]=i,phi[i]=i-1;
for(int j=1;j<=cnt && pri[j]*i<=n;j++) {
vis[pri[j]*i]=1;
if(!(i%pri[j])) {phi[i*pri[j]]=phi[i]*pri[j];break;}
else phi[i*pri[j]]=phi[i]*phi[pri[j]];
}
}
for(int i=1;i<=n;i++) qphi[i]=qphi[i-1]+phi[i];//前缀和
} int main() {
scanf("%d",&n);
init();
for(int i=1;i<=cnt;i++)
ans+=(qphi[(n-n%pri[i])/pri[i]]<<1)-1;
//稍微解释:因为每次枚举中有一种情况为(pi,pi) (pi为范围内第i个素数) 应被算作一种其余的都应乘2
//也可以刚开始按乘2算出来最后减去素数个数
printf("%lld",ans);
return 0;
}

code:(考试原代码)

PS:由于考题与本题略有不同不能过本题而且懒得改了,此处仅为记录原考题(即(2,4)与(4,2)视作一种情况)的代码

#include<cstdio>
#include<iostream>
#include<algorithm>
#include<cmath>
#include<cstring>
#include<ctime>
#define LL long long
using namespace std; const int N=10000010;
int n,cnt;
LL ans;
int pri[N/10],phi[N];
LL qphi[N];
bool vis[N]; int gcd(int a,int b) {//原始暴力算法(n^2)
return !b?a:gcd(b,a%b);
} void init() {//欧拉筛
vis[1]=1;phi[1]=1;
for(register int i=2;i<=n;i++) {
if(!vis[i]) pri[++cnt]=i,phi[i]=i-1;
for(register int j=1;j<=cnt && pri[j]*i<=n;j++) {
vis[pri[j]*i]=1;
if(i%pri[j]==0) {
phi[i*pri[j]]=phi[i]*pri[j];
break;
}
else phi[i*pri[j]]=phi[i]*phi[pri[j]];
}
}
for(int i=1;i<=n;i++) qphi[i]=qphi[i-1]+phi[i];
} int get(int x) {//高级暴力的二分
if((x<<1)>n) return 0;
int l=1,r=cnt;
while(l<r) {
int mid=(l+r+1)>>1;
if(pri[mid]*x<=n) l=mid;
else r=mid-1;
}
return l;
} int main() {
// freopen("gcd.in","r",stdin);
// freopen("gcd.out","w",stdout);
scanf("%d",&n);
// int be=clock();
init();
// for(register int i=1;i<=n;i++) {//比较快的暴力算法(nlogn)。。
// int x=get(i);
// ans+=x*phi[i];
// }
// printf("%lld",ans);
// ans=0;cout<<endl;
for(register int i=1;i<=cnt;i++) {//能过的~~暴力~~算法(n)
int x=(n-n%pri[i]);
ans+=qphi[x/pri[i]];
}
// cout<<cnt<<endl;
printf("%lld",ans);
// int ed=clock();
// cout<<endl<<ed-be;
return 0;
}

[luogu 2568] GCD (欧拉函数)的更多相关文章

  1. BZOJ 2818: Gcd [欧拉函数 质数 线性筛]【学习笔记】

    2818: Gcd Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 4436  Solved: 1957[Submit][Status][Discuss ...

  2. POJ 2773 Happy 2006【GCD/欧拉函数】

    根据欧几里德算法,gcd(a,b)=gcd(a+b*t,b) 如果a和b互质,则a+b*t和b也互质,即与a互质的数对a取模具有周期性. 所以只要求出小于n且与n互质的元素即可. #include&l ...

  3. HDU 2588 GCD (欧拉函数)

    GCD Time Limit: 1000MS   Memory Limit: 32768KB   64bit IO Format: %I64d & %I64u Submit Status De ...

  4. Bzoj-2818 Gcd 欧拉函数

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2818 题意:给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的数对(x ...

  5. BZOJ2818: Gcd 欧拉函数求前缀和

    给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的数对(x,y)有多少对. 如果两个数的x,y最大公约数是z,那么x/z,y/z一定是互质的 然后找到所有的素数,然后用欧拉函数求一 ...

  6. hdu2588 gcd 欧拉函数

    GCD Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...

  7. HDU 1695 GCD 欧拉函数+容斥定理

    输入a b c d k求有多少对x y 使得x在a-b区间 y在c-d区间 gcd(x, y) = k 此外a和c一定是1 由于gcd(x, y) == k 将b和d都除以k 题目转化为1到b/k 和 ...

  8. HDU 1695 GCD 欧拉函数+容斥定理 || 莫比乌斯反演

    GCD Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...

  9. HDU 1695 GCD (欧拉函数,容斥原理)

    GCD Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Submis ...

  10. hdu 1695 GCD (欧拉函数+容斥原理)

    GCD Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...

随机推荐

  1. Project Euler 43 Sub-string divisibility

    题意: 1406357289是一个0至9全数字数,因为它由0到9这十个数字排列而成:但除此之外,它还有一个有趣的性质:子串的可整除性.记d1是它的第一个数字,d2是第二个数字,依此类推,我们注意到: ...

  2. 64 求1+2+3+...+n(发散思维能力 )

    题目描述: 求1+2+3+...+n,要求不能使用乘除法.for.while.if.else.switch.case等关键字及条件判断语句(A?B:C). 解题思路: 1)利用&&的短 ...

  3. Loaded APR based Apache Tomcat Native library 1.1.24 using APR version 1.4.6.

    Loaded APR based Apache Tomcat Native library 1.1.24 using APR version 1.4.6. 我复制的几个地方: MySql C:\WIN ...

  4. CF870A Search for Pretty Integers

    CF870A Search for Pretty Integers 题意翻译 给出两个整数n,m,a数组有n个数,b数组有m个数.求一个数,这个数的每一位必须在a数组和b数组中至少出现过一次,求符合条 ...

  5. 解决的方法:mysql_connect()不支持请检查mysql模块是否正确载入

    故障现象:linux 安装discuz 错误提示:mysql_connect() 不支持请检查mysql模块是否正确载入. 解决的方法:查看/usr/lib/php/modules/ (64位的看/u ...

  6. Android开发之控制手机音频

    本实例通过MediaPlayer播放一首音乐并通过AudioManager控制手机音频.关于AudioManager的具体解释可參照:Android开发之AudioManager(音频管理器)具体解释 ...

  7. html5开发手机打电话发短信功能,html5的高级开发,html5开发大全,html手机电话短信功能具体解释

    在非常多的手机站点上,有打电话和发短信的功能,对于这些功能是怎样实现的呢.事实上不难,今天我们就用html5来实现他们. 简单的让你大开眼界.HTML5 非常easy写,但创建网页时,您常常须要反复做 ...

  8. JAVA实现远程SSH连接linux并运行命令

    博客转移到http://blog.codeconch.com

  9. 利用机器学习进行DNS隐蔽通道检测——数据收集,利用iodine进行DNS隐蔽通道样本收集

    我们在使用机器学习做DNS隐蔽通道检测的过程中,不得不面临样本收集的问题,没办法,机器学习没有样本真是“巧妇难为无米之炊”啊! 本文简单介绍了DNS隐蔽通道传输工具iodine,并介绍如何从iodin ...

  10. php如何判断两个时间戳是一天

    $date1 = getdate(strtotime('2013-12-31')); $date11 = getdate(strtotime('2014-01-01')); $date2 = getd ...