莫比乌斯反演套路一--令t=pd--BZOJ2820: YY的GCD
t<=10000组询问:有多少x,y,满足$x\epsilon [1,n],y\epsilon [1,m],(x,y)为质数$。n,m<=1e7。
首先式子列出来,f(i)--1<=x<=n,1<=y<=m中有多少(x,y)=i,g(i)--1<=x<=n,1<=y<=m中有多少i|(x,y),$g(i)=\sum_{i|d} f(d) ------> f(i)=\sum_{i|d} \mu(\frac{d}{i})g(d)$,而$g(i)=\frac{n}{i}\frac{m}{i}$,因此$f(i)=\sum_{i|d} \mu(\frac{d}{i})\frac{n}{d}\frac{m}{d}$,而(x,y)=k的充要条件是(x/k,y/k)=1,因此答案就$ans=\sum_{p是质数}^{min(n,m)}\sum_{d=1}^{min(n,m)}\mu(d)\frac{n}{pd}\frac{m}{pd}=\sum_{t=1}^{min(n,m)}\frac{n}{t}\frac{m}{t}\sum_{p|t}\mu(\frac{t}{p})$
前面那个sigma可以根号解决,而后面那个东西只跟t有关,因此预处理下即可。
//#include<iostream>
#include<cstring>
#include<cstdlib>
#include<cstdio>
//#include<bitset>
#include<algorithm>
//#include<cmath>
using namespace std; int T,n,m;
#define maxn 10000011
int miu[maxn],prime[maxn],lp,summiu[maxn]; bool notprime[maxn];
void pre(int n)
{
lp=; miu[]=; summiu[]=;
for (int i=;i<=n;i++)
{
if (!notprime[i]) {prime[++lp]=i; miu[i]=-;}
for (int j=;j<=lp && 1ll*prime[j]*i<=n;j++)
{
notprime[i*prime[j]]=;
if (i%prime[j]) miu[i*prime[j]]=-miu[i];
else {miu[i*prime[j]]=; break;}
}
}
for (int i=;i<=lp;i++)
for (int j=prime[i],cnt=;j<=n;j+=prime[i],cnt++)
summiu[j]+=miu[cnt];
for (int i=;i<=n;i++) summiu[i]+=summiu[i-];
} #define LL long long
int main()
{
pre();
scanf("%d",&T);
while (T--)
{
scanf("%d%d",&n,&m);
LL ans=;
for (int i=,to=min(n,m),last;i<=to;i=last+)
{
last=min(n/(n/i),m/(m/i));
ans+=1ll*(n/i)*(m/i)*(summiu[last]-summiu[i-]);
}
printf("%lld\n",ans);
}
return ;
}
莫比乌斯反演套路一--令t=pd--BZOJ2820: YY的GCD的更多相关文章
- BZOJ2820 YY的GCD 【莫比乌斯反演】
BZOJ2820 YY的GCD Description 神犇YY虐完数论后给傻×kAc出了一题给定N, M,求1<=x<=N, 1<=y<=M且gcd(x, y)为质数的(x, ...
- BZOJ2820 YY的GCD 莫比乌斯+系数前缀和
/** 题目:BZOJ2820 YY的GCD 链接:http://www.cogs.pro/cogs/problem/problem.php?pid=2165 题意:神犇YY虐完数论后给傻×kAc出了 ...
- [BZOJ2820]YY的GCD
[BZOJ2820]YY的GCD 试题描述 神犇YY虐完数论后给傻×kAc出了一题给定N, M,求1<=x<=N, 1<=y<=M且gcd(x, y)为质数的(x, y)有多少 ...
- BZOJ2820: YY的GCD(反演)
题解 题意 题目链接 Sol 反演套路题.. 不多说了,就是先枚举一个质数,再枚举一个约数然后反演一下. 最后可以化成这样子 \[\sum_{i = 1}^n \frac{n}{k} \frac{n} ...
- 莫比乌斯反演套路二--(n/d)(m/d)给提出来--BZOJ3529: [Sdoi2014]数表
一个数表上第i行第j列表示能同时整除i和j的自然数,Q<=2e4个询问,每次问表上1<=x<=n,1<=y<=m区域内所有<=a的数之和.n,m<=1e5,a ...
- 莫比乌斯反演套路三、四--BZOJ2154: Crash的数字表格 && BZOJ2693: jzptab
t<=1e4个询问每次问n,m<=1e7,$\sum_{1\leqslant x \leqslant n,1 \leqslant y\leqslant m}lcm(x,y)$. 首先题目要 ...
- BZOJ2820:YY的GCD(莫比乌斯反演)
Description 神犇YY虐完数论后给傻×kAc出了一题给定N, M,求1<=x<=N, 1<=y<=M且gcd(x, y)为质数的(x, y)有多少对kAc这种 傻×必 ...
- 【莫比乌斯反演】BZOJ2820 YY的GCD
Description 求有多少对(x,y)的gcd为素数,x<=n,y<=m.n,m<=1e7,T<=1e4. Solution 因为题目要求gcd为素数的,那么我们就只考虑 ...
- Bzoj-2820 YY的GCD Mobius反演,分块
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2820 题意:多次询问,求1<=x<=N, 1<=y<=M且gcd( ...
随机推荐
- C. Unfair Poll 数学题,
http://codeforces.com/contest/758/problem/C 需要一个能够找到任意一个位置的步数的方法,就能解决三个问题. 预处理出one(row, col)表示第一次经过这 ...
- Tomcat源码分析----eclipse中搭建源码环境
前提:JDK,至少1.7,ant,要设置ANT_HOME环境变量,需要再classpath中增加ant的lib目录,在path变量中增加ant的bin目录 1.官网下载tomcat源码包:apache ...
- vue 数组和对象的双向绑定不响应问题
对象和数组的数据类型是对象,对象是对象这个是毫无疑问的.数组可以把索引当成键名,把索引对应的元素当成该键名的键值. vue对象有些操作不能双向绑定的原因是vue未改变原对象,以及未给新增属性增加set ...
- 最新版Kubernetes常用命令大全
#查看所有namespace的pods运行情况 kubectl get pods --all-namespaces #查看具体pods,记得后边跟namespace名字哦 kubectl get po ...
- Context namespace element 'annotation-config' and its parser class [org.springframework.context.annotation.AnnotationConfigBeanDefinitionParser]
严重: Exception sending context initialized event to listener instance of class org.springframework.we ...
- sql语句中截取字符串
今天在开发过程中因为要用到合并单元格,在程序里实现了以后,查出来的数据太长,都把格式撑大了,后来想想可以在sql语句查询的时候就截取,就去网上找了一下,挺好用,就转了过来: 合并单元格: /// &l ...
- Python_练习_VS清理器
#导入os import os #创建列表放入后缀 d=[ '.txt','obj','tlog','lastbuildstate','idb','pdb','pch','res','ilk','sd ...
- Spring启动执行流程梳理
注:本文梳理启动流程使用的Spring版本:4.0.2.RELEASE 使用spring配置,都需要在web.xml中配置一个spring的监听器和启动参数(context-param),如下: &l ...
- css 动态导入css文件 @import 动态js加载 都是静态的
@import "http://apps.bdimg.com/libs/bootstrap/3.3.4/css/bootstrap.css" /*-防止各大cdn公共库加载地址失效 ...
- Java 斜杠 与 反斜杠
除号 /(数字键盘的斜杠)网址 /(数字键盘的斜杠)文件地址 \转义 \正则表达式 \