莫比乌斯反演套路一--令t=pd--BZOJ2820: YY的GCD
t<=10000组询问:有多少x,y,满足$x\epsilon [1,n],y\epsilon [1,m],(x,y)为质数$。n,m<=1e7。
首先式子列出来,f(i)--1<=x<=n,1<=y<=m中有多少(x,y)=i,g(i)--1<=x<=n,1<=y<=m中有多少i|(x,y),$g(i)=\sum_{i|d} f(d) ------> f(i)=\sum_{i|d} \mu(\frac{d}{i})g(d)$,而$g(i)=\frac{n}{i}\frac{m}{i}$,因此$f(i)=\sum_{i|d} \mu(\frac{d}{i})\frac{n}{d}\frac{m}{d}$,而(x,y)=k的充要条件是(x/k,y/k)=1,因此答案就$ans=\sum_{p是质数}^{min(n,m)}\sum_{d=1}^{min(n,m)}\mu(d)\frac{n}{pd}\frac{m}{pd}=\sum_{t=1}^{min(n,m)}\frac{n}{t}\frac{m}{t}\sum_{p|t}\mu(\frac{t}{p})$
前面那个sigma可以根号解决,而后面那个东西只跟t有关,因此预处理下即可。
//#include<iostream>
#include<cstring>
#include<cstdlib>
#include<cstdio>
//#include<bitset>
#include<algorithm>
//#include<cmath>
using namespace std; int T,n,m;
#define maxn 10000011
int miu[maxn],prime[maxn],lp,summiu[maxn]; bool notprime[maxn];
void pre(int n)
{
lp=; miu[]=; summiu[]=;
for (int i=;i<=n;i++)
{
if (!notprime[i]) {prime[++lp]=i; miu[i]=-;}
for (int j=;j<=lp && 1ll*prime[j]*i<=n;j++)
{
notprime[i*prime[j]]=;
if (i%prime[j]) miu[i*prime[j]]=-miu[i];
else {miu[i*prime[j]]=; break;}
}
}
for (int i=;i<=lp;i++)
for (int j=prime[i],cnt=;j<=n;j+=prime[i],cnt++)
summiu[j]+=miu[cnt];
for (int i=;i<=n;i++) summiu[i]+=summiu[i-];
} #define LL long long
int main()
{
pre();
scanf("%d",&T);
while (T--)
{
scanf("%d%d",&n,&m);
LL ans=;
for (int i=,to=min(n,m),last;i<=to;i=last+)
{
last=min(n/(n/i),m/(m/i));
ans+=1ll*(n/i)*(m/i)*(summiu[last]-summiu[i-]);
}
printf("%lld\n",ans);
}
return ;
}
莫比乌斯反演套路一--令t=pd--BZOJ2820: YY的GCD的更多相关文章
- BZOJ2820 YY的GCD 【莫比乌斯反演】
BZOJ2820 YY的GCD Description 神犇YY虐完数论后给傻×kAc出了一题给定N, M,求1<=x<=N, 1<=y<=M且gcd(x, y)为质数的(x, ...
- BZOJ2820 YY的GCD 莫比乌斯+系数前缀和
/** 题目:BZOJ2820 YY的GCD 链接:http://www.cogs.pro/cogs/problem/problem.php?pid=2165 题意:神犇YY虐完数论后给傻×kAc出了 ...
- [BZOJ2820]YY的GCD
[BZOJ2820]YY的GCD 试题描述 神犇YY虐完数论后给傻×kAc出了一题给定N, M,求1<=x<=N, 1<=y<=M且gcd(x, y)为质数的(x, y)有多少 ...
- BZOJ2820: YY的GCD(反演)
题解 题意 题目链接 Sol 反演套路题.. 不多说了,就是先枚举一个质数,再枚举一个约数然后反演一下. 最后可以化成这样子 \[\sum_{i = 1}^n \frac{n}{k} \frac{n} ...
- 莫比乌斯反演套路二--(n/d)(m/d)给提出来--BZOJ3529: [Sdoi2014]数表
一个数表上第i行第j列表示能同时整除i和j的自然数,Q<=2e4个询问,每次问表上1<=x<=n,1<=y<=m区域内所有<=a的数之和.n,m<=1e5,a ...
- 莫比乌斯反演套路三、四--BZOJ2154: Crash的数字表格 && BZOJ2693: jzptab
t<=1e4个询问每次问n,m<=1e7,$\sum_{1\leqslant x \leqslant n,1 \leqslant y\leqslant m}lcm(x,y)$. 首先题目要 ...
- BZOJ2820:YY的GCD(莫比乌斯反演)
Description 神犇YY虐完数论后给傻×kAc出了一题给定N, M,求1<=x<=N, 1<=y<=M且gcd(x, y)为质数的(x, y)有多少对kAc这种 傻×必 ...
- 【莫比乌斯反演】BZOJ2820 YY的GCD
Description 求有多少对(x,y)的gcd为素数,x<=n,y<=m.n,m<=1e7,T<=1e4. Solution 因为题目要求gcd为素数的,那么我们就只考虑 ...
- Bzoj-2820 YY的GCD Mobius反演,分块
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2820 题意:多次询问,求1<=x<=N, 1<=y<=M且gcd( ...
随机推荐
- 一命令安装nginx
#!/bin/bash yum -y install wget pcre-devel openssl openssl-devel libtool gcc automake autoconf libto ...
- Oracle分区表例子
分区表 Oracle提供的分区方法有以下几种. 1.范围分区(range) 范围分区是应用范围比较广的表分区方式,它是以列的值的范围来作为分区的划分条 件,将记录存放到列值所在的 range分区中. ...
- VUE学习,is 特性,转载来源:https://segmentfault.com/q/1010000007205176/
- esp8266 串口通讯
1.发送 调用uart_init(115200,115200);初始化串口,波特率设置为115200.前面一个是设置uart0的波特率.后面一个是设置.uart的波特率 然后就可以使用uart0_tx ...
- 实现通知栏Notification
课程Demo public class MainActivity extends Activity implements OnClickListener{ NotificationManager ma ...
- win7打开网络看不到局域网的其他电脑
双击打开桌面上的“网络”,在打开的窗口中看不到局域网的其他电脑/计算机.以前都可以看到的.可能是没有开启网络发现的原因,可是我并没有关闭网络发现.不知,怎么回事? Windows7查看网络邻居要开启g ...
- Python基础教程 读书笔记(2)第二章 列表和元组
2.1序列概览 列表和元组的主要区别在于,列表可以修改,元组则不能.也就是说如果要根据要求来添加元素,那么列表可能会更好用;而出于某些原因,序列不能修改的时候,使用元组则更为合适.使用后者的理由通常是 ...
- (转)hibernate-5.0.7+struts-2.3.24+spring-4.2.4三大框架整合
http://blog.csdn.net/yerenyuan_pku/article/details/70040220 SSH框架整合思想 三大框架应用在JavaEE三层结构,每一层都用到了不同的框架 ...
- Android(java)学习笔记193:ContentProvider使用之获得系统联系人信息01
1.系统联系人的数据库(3张最重要的表) (1)raw_contacts 联系人表 保存联系人的id contact_id (2)data 数据表 保存联系人的数据 ( ...
- 防止asp.net连续点击按钮重复提交
1.在Page_Load中添加如下代码: protected void Page_Load(object sender, EventArgs e) { this.btnEdit.Attributes[ ...