[BZOJ3751][NOIP2014]解方程(数学相关+乱搞)
题目描述
已知多项式方程:
a0+a1x+a2x^2+..+anx^n=0
求这个方程在[1, m ] 内的整数解(n 和m 均为正整数)
输入输出格式
输入格式:
输入文件名为equation .in。
输入共n + 2 行。
第一行包含2 个整数n 、m ,每两个整数之间用一个空格隔开。
接下来的n+1 行每行包含一个整数,依次为a0,a1,a2..an
输出格式:
输出文件名为equation .out 。
第一行输出方程在[1, m ] 内的整数解的个数。
接下来每行一个整数,按照从小到大的顺序依次输出方程在[1, m ] 内的一个整数解。
输入输出样例
说明
对于30%的数据:0<n<=2,|ai|<=100,an!=0,m<100
对于50%的数据:0<n<=100,|ai|<=10^100,an!=0,m<100
对于70%的数据:0<n<=100,|ai|<=10^10000,an!=0,m<10000
对于100%的数据:0<n<=100,|ai|<=10^10000,an!=0,m<1000000
题解:
考试的时候取模数选的多还大无语了,然后总觉得不对。
后来看了题解发现,我那样被严重卡常数。
只需要取几个较小的模数,然后将式子左边取模,然后讲1-p(表示模数)
每个模拟一次就是pn复杂度,然后看哪几个不为0,说明绝对不行,那么其倍数
也不行,多选几个模数就可以了。
#include<cstdio>
#include<cstring>
#include<cmath>
#include<iostream>
#include<algorithm> const int N=;
const int L=;
const int M=;
const int TOT=; int n,m,ans;
int p[TOT+],a[N],len[N];
bool flg[M];
char s[N][L]; void make_list()
{
p[]=;
p[]=;
p[]=;
p[]=;
}
int main()
{
make_list();
scanf("%d%d",&n,&m);
for(int i=;i<=n;i++)
scanf("%s",s[i]);
for(int i=;i<=n;i++)
len[i]=strlen(s[i]);
for(int i=;i<=TOT;i++)
{
for(int j=;j<=n;j++)
{
int flag=(s[j][]=='-'?:);
a[j]=;
for(int k=flag;k<len[j];k++)
a[j]=(a[j]*+s[j][k]-'')%p[i];
if(flag) a[j]=-a[j];
}//每个系数先取模
for(int j=;j<=p[i];j++)
{
int tmp=;
for(int k=n;k>=;k--)
tmp=(tmp*j+a[k])%p[i];
if(tmp)//表示不行
for(int k=;j+k*p[i]<=m;k++)
flg[j+k*p[i]]=;//其倍数也不行
}
}
for(int i=;i<=m;i++)
if(!flg[i]) ans++;
printf("%d\n",ans);
for(int i=;i<=m;i++)
if(!flg[i]) printf("%d\n",i);
}
[BZOJ3751][NOIP2014]解方程(数学相关+乱搞)的更多相关文章
- [BZOJ3751] [NOIP2014] 解方程 (数学)
Description 已知多项式方程:$a_0+a_1*x+a_2*x^2+...+a_n*x^n=0$ 求这个方程在[1,m]内的整数解(n和m均为正整数). Input 第一行包含2个整数n.m ...
- BZOJ 3751: [NOIP2014]解方程 数学
3751: [NOIP2014]解方程 题目连接: http://www.lydsy.com/JudgeOnline/problem.php?id=3751 Description 已知多项式方程: ...
- [BZOJ3751][NOIP2014] 解方程
Description 已知多项式方程:a0+a1*x+a2*x^2+...+an*x^n=0 求这个方程在[1,m]内的整数解(n和m均为正整数). Input 第一行包含2个整数n.m,每两个 ...
- BZOJ3751 NOIP2014 解方程(Hash)
题目链接 BZOJ3751 这道题的关键就是选取取模的质数. 我选了4个大概几万的质数,这样刚好不会T 然后统计答案的时候如果对于当前质数,产生了一个解. 那么对于那些对这个质数取模结果为这个数的数 ...
- 【秦九韶算法】【字符串哈希】bzoj3751 [NOIP2014]解方程
在模意义下枚举m进行验证,多设置几个模数,而且小一些,利用f(x+p)%p=f(x)%p降低计算次数.UOJ AC,bzoj OLE. #include<cstdio> #include& ...
- 【BZOJ】3751: [NOIP2014]解方程【秦九韶公式】【大整数取模技巧】
3751: [NOIP2014]解方程 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 4856 Solved: 983[Submit][Status ...
- LOJ2503 NOIP2014 解方程 【HASH】
LOJ2503 NOIP2014 解方程 LINK 题目大意就是给你一个方程,让你求[1,m]中的解,其中系数非常大 看到是提高T3还是解方程就以为是神仙数学题 后来研究了一下高精之类的算法发现过不了 ...
- bzoj 3751: [NOIP2014]解方程 同余系枚举
3.解方程(equation.cpp/c/pas)[问题描述]已知多项式方程:a ! + a ! x + a ! x ! + ⋯ + a ! x ! = 0求这个方程在[1, m]内的整数解(n 和 ...
- bzoj3751 / P2312 解方程
P2312 解方程 bzoj3751(数据加强) 暴力的一题 数据范围:$\left | a_{i} \right |<=10^{10000}$.连高精都无法解决. 然鹅面对这种题,有一种常规套 ...
随机推荐
- 善用oss客户端工具
有个需求:需要我到阿里oss上下载ts文件 估摸了一下100多个只占了6分之一的时间,全下下来得700多个 还不算上正在运行的 正当我手动一个一个点的时候: 100个 总算点完了 全部在桌面是摆着: ...
- 224 Basic Calculator 基本计算器
实现一个基本的计算器来计算一个简单的字符串表达式. 字符串表达式可以包含左括号 ( ,右括号),加号+ ,减号 -,非负整数和空格 . 假定所给的表达式语句总是正确有效的. 例如: "1 + ...
- Vmware workstation12里如何正确快速安装可视化IDS系统Security Onion(图文详解)
不多说,直接上干货! 首先,大家要明确: 问:安全洋葱能阻止入侵吗? 答:这一点,和OSSIM一样,不能阻止入侵. Security Onion基于Ubuntu,包含了入侵检测.网络安全监控.日志管理 ...
- [转]windows azure How to use Blob storage from .NET
本文转自:http://azure.microsoft.com/en-us/documentation/articles/storage-dotnet-how-to-use-blobs/?rnd=1 ...
- 可变类型的安全性——更锋利的C#代码小记(2)
ReadOnlyCollection类型是.NET系统类库提供的一个只读集合类型,它与原来的List<string>不存在任何类型转换关系,因此可以从根本上阻止外部对其的修改操作using ...
- JAVA——不简单的fianl关键字
protected用来修饰 域,代表域的访问权限是:包权限 或者 不同包,但是是子类 : final 修饰常量只要是该常量代入的计算式,在编译时期,就会被执行计算,以减轻运行时的负担.(只对基本数据类 ...
- day23-1 isinstance、issubclass和反射
目录 isinstance和issubclass 反射(hasattr,getattr,setattr,delattr) isinstance和issubclass isinstance(obj,cl ...
- redis 其他特性
1.消息订阅与发布 subscribe my1 订阅频道 psubscribe my1* 批量订阅频道,订阅以my1开头的所有频道 publish my1 hello 在指定频道中发布消息,返回值为接 ...
- struts2 使用json
前台代码: Struts.xml: UserAction: 注意: 1)struts类库里面没有提供ezmorph-1.0.6.jar文件,所以要手动添加:
- Spring MVC全局异常后返回JSON异常数据
问题: 当前项目是作为手机APP后台支持,使用spring mvc + mybaits + shiro进行开发.后台服务与手机端交互是发送JSON数据.如果后台发生异常,会直接返回异常页面,显示异常内 ...