HDU 4983 Goffi and GCD

思路:数论题。假设k为2和n为1。那么仅仅可能1种。其它的k > 2就是0种,那么事实上仅仅要考虑k = 1的情况了。k = 1的时候,枚举n的因子,然后等于求该因子满足的个数,那么gcd(x, n) = 该因子的个数为phi(n / 该因子),然后再利用乘法原理计算就可以

代码:

#include <cstdio>
#include <cstring>
#include <cmath> typedef long long ll; const ll MOD = 1000000007;
const int N = 35333; ll n, k, pn, vis[N];
ll prime[N], frc[N], fn, cnt[N]; void getprime() {
pn = 0;
for (ll i = 2; i < N; i++) {
if (vis[i]) continue;
prime[pn++] = i;
for (ll j = i * i; j < N; j += i)
vis[j] = 1;
}
} void getfrc(ll n) {
fn = 0;
for (ll i = 0; i < pn && n >= prime[i]; i++) {
if (n % prime[i] == 0) {
frc[fn] = prime[i];
cnt[fn] = 0;
while (n % prime[i] == 0) {
cnt[fn]++;
n /= prime[i];
}
fn++;
}
}
if (n != 1) {
frc[fn] = n;
cnt[fn++] = 1;
}
} ll ans = 0; ll phi(ll n) {
ll m = (ll)sqrt(n * 1.0);
ll ans = n;
for (ll i = 2; i <= m; i++) {
if (n % i == 0) {
ans = ans / i * (i - 1);
while (n % i == 0) n /= i;
}
}
if (n > 1) ans = ans / n * (n - 1);
return ans;
} void dfs(ll u, ll sum) {
if (u == fn) {
ll r = n / sum;
ans = (phi(n / sum) * phi(sum) % MOD + ans) % MOD;
return;
}
for (ll i = 0; i <= cnt[u]; i++) {
dfs(u + 1, sum);
sum *= frc[u];
}
} ll solve() {
getfrc(n);
ans = 0;
dfs(0, 1);
return ans;
} int main() {
getprime();
while (~scanf("%I64d%I64d", &n, &k)) {
if (n == 1) printf("1\n");
else if (k == 2) printf("1\n");
else if (k > 2) printf("0\n");
else {
printf("%I64d\n", solve());
}
}
return 0;
}

HDU 4983 Goffi and GCD(数论)的更多相关文章

  1. hdu 4983 Goffi and GCD(数论)

    题目链接:hdu 4983 Goffi and GCD 题目大意:求有多少对元组满足题目中的公式. 解题思路: n = 1或者k=2时:答案为1 k > 2时:答案为0(n≠1) k = 1时: ...

  2. hdu 4983 Goffi and GCD(欧拉函数)

    Problem Description Goffi is doing his math homework and he finds an equality on his text book: gcd( ...

  3. HDU 4983 Goffi and GCD

    题目大意:给你N和K,问有多少个数对满足gcd(N-A,N)*gcd(N-B,N)=N^K.题解:由于 gcd(a, N) <= N,于是 K>2 都是无解,K=2 只有一个解 A=B=N ...

  4. 【HDOJ】4983 Goffi and GCD

    题意说的非常清楚,即求满足gcd(n-a, n)*gcd(n-b, n) = n^k的(a, b)的不同对数.显然gcd(n-a, n)<=n, gcd(n-b, n)<=n.因此当n不为 ...

  5. HDU 4981 Goffi and Median(水)

    HDU 4981 Goffi and Median 思路:排序就能够得到中间数.然后总和和中间数*n比較一下就可以 代码: #include <cstdio> #include <c ...

  6. HDU 4982 Goffi and Squary Partition(推理)

    HDU 4982 Goffi and Squary Partition 思路:直接从全然平方数往下找,然后推断是否能构造出该全然平方数,假设能够就是yes,假设都不行就是no.注意构造时候的推断,因为 ...

  7. hdu 5869 区间不同GCD个数(树状数组)

    Different GCD Subarray Query Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 65536/65536 K ( ...

  8. hdu 5656 CA Loves GCD(n个任选k个的最大公约数和)

    CA Loves GCD  Accepts: 64  Submissions: 535  Time Limit: 6000/3000 MS (Java/Others)  Memory Limit: 2 ...

  9. Bash and a Tough Math Puzzle CodeForces 914D 线段树+gcd数论

    Bash and a Tough Math Puzzle CodeForces 914D 线段树+gcd数论 题意 给你一段数,然后小明去猜某一区间内的gcd,这里不一定是准确值,如果在这个区间内改变 ...

随机推荐

  1. Node.js+Express+MVC+Mysql小白创建新项目

    1.打开CMD命令窗口,这一步不会的,回家休息,不要看了 2.npm install -g yo  等待时间看个人电脑情况. 如果没有npm命令,建议先安装npm ,npm安装介绍:https://d ...

  2. Google浏览器开发者工具:CSSViewer(一个Css查看器)

    CSSViewer的简介 CSSViewer是一款可以帮助用户快速查看当前的网页元素的CSS属性的谷歌浏览器插件,在Chrome中安装了CSSViewer插件以后,用户就可以在设计网页的时候,快速地模 ...

  3. Eureka 整理

    服务治理:(该模块也可以使用集群) 该模块主要负责完成微服务架构中的服务治理功能. 1.构建服务注册中心. 每个服务单元需要向注册中心登记自己提供的服务. 2.服务注册与服务发现. 服务之间的调用不再 ...

  4. 【原创】如何编写c#用户登陆后用户名在前台显示

    这种肯定是判断session啦!!!!! @{ string username = (string)Session["username"]; user user = new use ...

  5. date - 打印或设置系统日期和时间

    总览 date [选项]... [+格式] date [选项] [MMDDhhmm[[CC]YY][.ss]] 描述 根据指定格式显示当前时间或设置系统时间. -d, --date=STRING 显示 ...

  6. Java多线程基础(面试向)

    ----?为什么要用到多线程 CPU是以时间片的方式为进程分配CUP处理时间的,如果当一个进程同时要完成几件事的时候,如当从网上下载文件的时候,需要一边下载一边显示进度而且还要一边保存,如果按照单线程 ...

  7. [Python3网络爬虫开发实战] 3.2.1-基本用法

    1. 准备工作 在开始之前,请确保已经正确安装好了requests库.如果没有安装,可以参考1.2.1节安装. 2. 实例引入 urllib库中的urlopen()方法实际上是以GET方式请求网页,而 ...

  8. 自动清除日期目录shell脚本

    很多时候备份通常会使用到基于日期来创建文件夹,对于这些日期文件夹下面又有很多子文件夹,对于这些日期文件整个移除,通过find结合rm或者delete显得有些力不从心.本文提供一个简单的小脚本,可以嵌入 ...

  9. stark组件之注册与路由系统(三)

    在文章stark组件前戏中已经提到过,django的注册功能是通过AdminSite的单例进行组册的,所以在这里也可以进行单例模式. class AdminSite(object): def __in ...

  10. Hadoop安装与配置

    Hadoop介绍 上面是官方介绍,翻一下来总结一句话就是:Hadoop是一个高可用,用于分布式处理大规模计算的工具. Hadoop1.2 下载 . Hadoop1.2 安装 1. 安装jDK 2. 配 ...