洛谷——P2158 [SDOI2008]仪仗队
P2158 [SDOI2008]仪仗队
找规律大水题嘛,如果你做过P1170 兔八哥与猎人
这题得到的规律是$a,b,c,d$,若$gcd(a-b,c-d)==1$ 那么$a,b$就能看到$c,d$
显然这题暴力枚举$O(n^2)$是过去的,然后有了规律,那么这题也就是要求$\sum_{i=1}^{n} \varphi i$
据说线性筛可以筛欧拉函数,来瞧一瞧
首先根据欧拉函数通式$\varphi(x)=x\prod\limits_{i=1}^{n}{(1-\frac{1}{p_i})}$
其中$p_1, p_2……p_n$为$x$的所有质因数,$x$是不为0的整数。
埃式筛法:
for(int i=;i<=n;i++)
ph[i]=i;
for(int i=;i<=n;i++){
if(ph[i]==i)
for(int j=i;j<=n;j+=i)
ph[j]=ph[j]/i*(i-);
}
几个重要的性质
1.$\varphi(1) =1$
2.$n$是质数,$\varphi (n)= n-1$
3.欧拉函数是积性函数,所以当$a,b$互质时,$\varphi (a\times b) = \varphi (a)\times \varphi(b) $
4.当$p$为质数时,$\varphi (p^k)=p^k -p^{k-1} =(p-1)*p^{k-1}$因为除$p$的倍数外,其他数都跟$n$互质。
5.当$n$为奇数时,$\varphi (2n)=\varphi (n)$,证明与上述类似。
6.当$n>2$时,$\varphi (n)$都是偶数;
欧拉筛法(线性筛法):
void OULA(){
for(int i=;i<=N;i++){
if(!vis[i]) {
prime[++tot]=i;
ph[i]=i-;
}
for(int j=;j<=tot&&i*prime[j]<=N;j++){
vis[prime[j]*i]=;
if(i%prime[j]) ph[prime[j]*i]=(prime[j]-)*ph[i];
else {
ph[prime[j]*i]=ph[i]*prime[j];
break;
}
}
}
}
洛谷——P2158 [SDOI2008]仪仗队的更多相关文章
- 洛谷 P2158 [SDOI2008]仪仗队 解题报告
P2158 [SDOI2008]仪仗队 题目描述 作为体育委员,C君负责这次运动会仪仗队的训练.仪仗队是由学生组成的N * N的方阵,为了保证队伍在行进中整齐划一,C君会跟在仪仗队的左后方,根据其视线 ...
- 洛谷P2158 [SDOI2008]仪仗队
题目描述 作为体育委员,C君负责这次运动会仪仗队的训练.仪仗队是由学生组成的N * N的方阵,为了保证队伍在行进中整齐划一,C君会跟在仪仗队的左后方,根据其视线所及的学生人数来判断队伍是否整齐(如下图 ...
- 洛谷 P2158 [SDOI2008]仪仗队 && 洛谷 P1447 [NOI2010]能量采集
https://www.luogu.org/problemnew/show/P2158 以人所在位置为(0,0)建立坐标系, 显然除了(0,1)和(1,0)外,可以只在坐标(x,y)的gcd(x,y) ...
- 洛谷P2158 [SDOI2008]仪仗队 欧拉函数的应用
https://www.luogu.org/problem/P2158 #include<bits/stdc++.h> #define int long long using namesp ...
- 洛谷 P2158 [SDOI2008]仪仗队
题意简述 给定一个n,求gcd(x, y) = 1(x, y <= n)的(x, y)个数 题解思路 欧拉函数, 则gcd(x, y) = 1(x <= y <= n)的个数 ans ...
- 洛谷 2158 [SDOI2008]仪仗队
Description 作为体育委员,C君负责这次运动会仪仗队的训练.仪仗队是由学生组成的N * N的方阵,为了保证队伍在行进中整齐划一,C君会跟在仪仗队的左后方,根据其视线所及的学生人数来判断队伍是 ...
- P2158 [SDOI2008]仪仗队
P2158 [SDOI2008]仪仗队图是关于y=x对称的,横纵坐标一定是互质的否则在之前就被扫过了,所以就可以用欧拉函数再*2就完了. #include<iostream> #inclu ...
- P2158 [SDOI2008]仪仗队 && 欧拉函数
P2158 [SDOI2008]仪仗队 题目描述 作为体育委员,C君负责这次运动会仪仗队的训练.仪仗队是由学生组成的N * N的方阵,为了保证队伍在行进中整齐划一,C君会跟在仪仗队的左后方,根据其视线 ...
- 洛谷 P1984 [SDOI2008]烧水问题
洛谷 P1984 [SDOI2008]烧水问题 题目描述 把总质量为1kg的水分装在n个杯子里,每杯水的质量均为(1/n)kg,初始温度均为0℃.现需要把每一杯水都烧开.我们可以对任意一杯水进行加热. ...
随机推荐
- JMeter快捷键图标制作 去掉cmd命令窗口
使用jmeter时: 如果使用默认的jmeter.bat启动的话,会出现一个CMD命令窗口之后再会启动jmeter工作界面 直接启用ApacheJMeter.jar文件即可跳过CMD命令窗口启动jme ...
- 2015-2016 ACM-ICPC Pacific Northwest Regional Contest (Div. 2) S Surf
SurfNow that you've come to Florida and taken up surng, you love it! Of course, you've realized that ...
- linux常见基础问题
1,32位与64位的区别,怎么查看系统版本? 32位相比于64位处理速度更慢一些,64位同样也比32位更占内存.用户体验上没有区别:用uname -a 查看系统版本信息 2,swap分区的作用是什么 ...
- python-----使用requirements.txt批量安装包
首先写一个 requirements.txt,格式如图: 然后使用命令行,到 requirements.txt 所在的目录下,执行命令: pip install -r requirements.txt ...
- CF 908 D New Year and Arbitrary Arrangement —— 期望DP
题目:http://codeforces.com/contest/908/problem/D 首先,设 f[i][j] 表示有 i 个 a,j 个 ab 组合的期望,A = pa / (pa + pb ...
- bzoj1604
treap+并查集 我们能想到一个点和最近点对连接,用并查集维护,但是这个不仅不能求,而且还是不对的,于是就看了题解 把距离转为A(x-y,x+y),这样两点之间的距离就是max(x'-X',y'-Y ...
- JavaScript--DOM删除节点removeChild()
删除节点removeChild() removeChild() 方法从子节点列表中删除某个节点.如删除成功,此方法可返回被删除的节点,如失败,则返回 NULL. 语法: nodeObject.remo ...
- 51nod 1029 大数除法
1029 大数除法 基准时间限制:4 秒 空间限制:131072 KB 分值: 160 难度:6级算法题 收藏 关注 给出2个大整数A,B,计算A / B和A Mod B的结果. Input 第1 ...
- 关于dbms_output包的使用
General Source {ORACLE_HOME}/rdbms/admin/dbmsotpt.sql First Available 7.3.4 Data Types TYPE chararr ...
- c++类的内存布局
问题: 考察了reinterpret_cast和static_cast的区别.顺道发现了一个可以查看c++内存布局的工具(在VS中). 结果: 前两个输出的地址形同,后一个不同. class A{in ...