洛谷 3870 [TJOI2009]开关

【题解】
线段树基础题。对于每个修改操作把相应区间的sum改为区间长度-sum即可。
#include<cstdio>
#include<algorithm>
#include<cstring>
#define LL long long
#define rg register
#define N 200010
#define ls (u<<1)
#define rs (u<<1|1)
#define mid ((a[u].l+a[u].r)>>1)
#define len(x) (a[x].r-a[x].l+1)
using namespace std;
int n,m;
struct tree{
int l,r,sum,mark;
}a[N<<];
inline int read(){
int k=,f=; char c=getchar();
while(c<''||c>'')c=='-'&&(f=-),c=getchar();
while(''<=c&&c<='')k=k*+c-'',c=getchar();
return k*f;
}
void build(int u,int l,int r){
a[u].l=l; a[u].r=r;
if(l<r) build(ls,l,mid),build(rs,mid+,r);
}
inline void pushdown(int u){
a[u].mark^=;
a[ls].mark^=; a[ls].sum=len(ls)-a[ls].sum;
a[rs].mark^=; a[rs].sum=len(rs)-a[rs].sum;
}
void update(int u,int r,int l){
if(l<=a[u].l&&a[u].r<=r){
a[u].mark^=;
a[u].sum=len(u)-a[u].sum;
return;
}
if(a[u].mark) pushdown(u);
if(l<=mid) update(ls,r,l);
if(r>mid) update(rs,r,l);
a[u].sum=a[ls].sum+a[rs].sum;
}
int query(int u,int r,int l){
if(l<=a[u].l&&a[u].r<=r) return a[u].sum;
if(a[u].mark) pushdown(u);
int ret=;
if(l<=mid) ret+=query(ls,r,l);
if(r>mid) ret+=query(rs,r,l);
return ret;
}
int main(){
n=read(); m=read(); build(,,n);
while(m--){
int opt=read();
if(opt) printf("%d\n",query(,read(),read()));
else update(,read(),read());
}
return ;
}
洛谷 3870 [TJOI2009]开关的更多相关文章
- 洛谷P3870 [TJOI2009]开关
题目描述 现有\(N(2 ≤ N ≤ 100000)\)盏灯排成一排,从左到右依次编号为:\(1,2,......,N\).然后依次执行\(M(1 ≤ M ≤ 100000)\)项操作,操作分为两种: ...
- 洛谷 P3870 [TJOI2009]开关
题意简述 有n盏灯,默认为关,有两个操作: 1.改变l~r的灯的状态(把开着的灯关上,关着的灯打开) 2.查询l~r开着的灯的数量 题解思路 维护一个线段树,支持区间修改,区间查询 懒标记每次^1 代 ...
- 洛谷 P3870 [TJOI2009]开关 题解
原题链接 前置知识: 线段树的单点.区间的修改与查询. 一看,我们需要维护两个操作: 区间取反: 区间求和. (因为区间 \(1\) 的个数,就是区间的和) 典型的 线段树 . 如果你只会线段树的 区 ...
- 洛谷P3870 [TJOI2009] 开关 (线段树)
简单的省选题...... 打异或标记即可. 1 #include<bits/stdc++.h> 2 const int N=2e5+10; 3 using namespace std; 4 ...
- 「洛谷3870」「TJOI2009」开关【线段树】
题目链接 [洛谷] 题解 来做一下水题来掩饰ZJOI2019考炸的心情QwQ. 很明显可以线段树. 维护两个值,\(Lazy\)懒标记表示当前区间是否需要翻转,\(s\)表示区间还有多少灯是亮着的. ...
- 洛谷P3868 [TJOI2009]猜数字(中国剩余定理,扩展欧几里德)
洛谷题目传送门 90分WA第二个点的看过来! 简要介绍一下中国剩余定理 中国剩余定理,就是用来求解这样的问题: 假定以下出现数都是自然数,对于一个线性同余方程组(其中\(\forall i,j\in[ ...
- Solution -「ZJOI 2019」「洛谷 P5326」开关
\(\mathcal{Description}\) Link. 有 \(n\) 个开关,初始时所有开关的状态为 \(0\).给定开关的目标状态 \(s_1,s_2,\cdots,s_n\).每 ...
- 洛谷 P3868 [TJOI2009]猜数字
题意简述 给定\(a[1],a[2],\cdots,a[n]\) 和 \(b[1],b[2],\cdots,b[n]\),其中\(b\)中元素两两互素. 求最小的非负整数\(n\),满足对于任意的\( ...
- 洛谷P2845-Switching on the Lights 开关灯
Problem 洛谷P2845-Switching on the Lights 开关灯 Accept: 154 Submit: 499Time Limit: 1000 mSec Memor ...
随机推荐
- python-----列表生成式和列表生成器表达
列表表达式: 程序一: 常规写法: L = [] for x in range(1, 11): L.append(x * x) print(L) #[1, 4, 9, 16, 25, 36, 49, ...
- pycharm打开多个项目并存
问题: 有时我们需要打开多个项目,而现在的做法是: 原有的a项目不动,新打开一个pycharm来打开b项目, 或者 在原有的a项目中打开b项目并覆盖a项目,即a项目与b项目不能共存 需求: 有时我们 ...
- java运行jdk连接mysql出现了:Establishing SSL connection without server's identity verification is not recommended
注意:出现这类提示也不会影响对数据库的增删改查操作,所以不用紧张.. 在运行练习时出现下面的错误信息提示: Establishing SSL connection without server's i ...
- SQL Server 方言类型映射问题
关于SQL Server的类型映射问题,例如,nvarchar无法进行hibernate类型映射,需要通过convert进行类型转换方可进行获取
- 分布式消息通信(ActiveMQ)
分布式消息通信(ActiveMQ) 应用场景 异步通信 应用解耦 流量削峰 # ActiveMQ安装 下载 http://activemq.apache.org/ 压缩包上传到Linux系统 apac ...
- (斯特林公式)51NOD 1058 N的阶乘的长度
输入N求N的阶乘的10进制表示的长度.例如6! = 720,长度为3. Input 输入N(1 <= N <= 10^6) Output 输出N的阶乘的长度 Input示例 6 Out ...
- Asp.NET 知识点总结(二)
1.两个对象值相同(x.equals(y) == true),但却可有不同的hash code,这句话对不对? 答:不对,有相同的 hash code 编码格式. 2.swtich是否能作用在byte ...
- 375 Guess Number Higher or Lower II 猜数字大小 II
我们正在玩一个猜数游戏,游戏规则如下:我从 1 到 n 之间选择一个数字,你来猜我选了哪个数字.每次你猜错了,我都会告诉你,我选的数字比你的大了或者小了.然而,当你猜了数字 x 并且猜错了的时候,你需 ...
- 创建对象——单例(Singleton)模式
单例(Singleton)模式: 保证一个类在系统里只能有一个对象被实例化. 如:缓存池.数据库连接池.线程池.一些应用服务实例等. 难点:在多线程环境中,保证实例的唯一性. ...
- P2P 网络核心技术:Gossip 协议
背景 Gossip protocol 也叫 Epidemic Protocol (流行病协议),实际上它还有很多别名,比如:“流言算法”.“疫情传播算法”等. 这个协议的作用就像其名字表示的意思一样, ...