洛谷 3870 [TJOI2009]开关
【题解】
线段树基础题。对于每个修改操作把相应区间的sum改为区间长度-sum即可。
#include<cstdio>
#include<algorithm>
#include<cstring>
#define LL long long
#define rg register
#define N 200010
#define ls (u<<1)
#define rs (u<<1|1)
#define mid ((a[u].l+a[u].r)>>1)
#define len(x) (a[x].r-a[x].l+1)
using namespace std;
int n,m;
struct tree{
int l,r,sum,mark;
}a[N<<];
inline int read(){
int k=,f=; char c=getchar();
while(c<''||c>'')c=='-'&&(f=-),c=getchar();
while(''<=c&&c<='')k=k*+c-'',c=getchar();
return k*f;
}
void build(int u,int l,int r){
a[u].l=l; a[u].r=r;
if(l<r) build(ls,l,mid),build(rs,mid+,r);
}
inline void pushdown(int u){
a[u].mark^=;
a[ls].mark^=; a[ls].sum=len(ls)-a[ls].sum;
a[rs].mark^=; a[rs].sum=len(rs)-a[rs].sum;
}
void update(int u,int r,int l){
if(l<=a[u].l&&a[u].r<=r){
a[u].mark^=;
a[u].sum=len(u)-a[u].sum;
return;
}
if(a[u].mark) pushdown(u);
if(l<=mid) update(ls,r,l);
if(r>mid) update(rs,r,l);
a[u].sum=a[ls].sum+a[rs].sum;
}
int query(int u,int r,int l){
if(l<=a[u].l&&a[u].r<=r) return a[u].sum;
if(a[u].mark) pushdown(u);
int ret=;
if(l<=mid) ret+=query(ls,r,l);
if(r>mid) ret+=query(rs,r,l);
return ret;
}
int main(){
n=read(); m=read(); build(,,n);
while(m--){
int opt=read();
if(opt) printf("%d\n",query(,read(),read()));
else update(,read(),read());
}
return ;
}
洛谷 3870 [TJOI2009]开关的更多相关文章
- 洛谷P3870 [TJOI2009]开关
题目描述 现有\(N(2 ≤ N ≤ 100000)\)盏灯排成一排,从左到右依次编号为:\(1,2,......,N\).然后依次执行\(M(1 ≤ M ≤ 100000)\)项操作,操作分为两种: ...
- 洛谷 P3870 [TJOI2009]开关
题意简述 有n盏灯,默认为关,有两个操作: 1.改变l~r的灯的状态(把开着的灯关上,关着的灯打开) 2.查询l~r开着的灯的数量 题解思路 维护一个线段树,支持区间修改,区间查询 懒标记每次^1 代 ...
- 洛谷 P3870 [TJOI2009]开关 题解
原题链接 前置知识: 线段树的单点.区间的修改与查询. 一看,我们需要维护两个操作: 区间取反: 区间求和. (因为区间 \(1\) 的个数,就是区间的和) 典型的 线段树 . 如果你只会线段树的 区 ...
- 洛谷P3870 [TJOI2009] 开关 (线段树)
简单的省选题...... 打异或标记即可. 1 #include<bits/stdc++.h> 2 const int N=2e5+10; 3 using namespace std; 4 ...
- 「洛谷3870」「TJOI2009」开关【线段树】
题目链接 [洛谷] 题解 来做一下水题来掩饰ZJOI2019考炸的心情QwQ. 很明显可以线段树. 维护两个值,\(Lazy\)懒标记表示当前区间是否需要翻转,\(s\)表示区间还有多少灯是亮着的. ...
- 洛谷P3868 [TJOI2009]猜数字(中国剩余定理,扩展欧几里德)
洛谷题目传送门 90分WA第二个点的看过来! 简要介绍一下中国剩余定理 中国剩余定理,就是用来求解这样的问题: 假定以下出现数都是自然数,对于一个线性同余方程组(其中\(\forall i,j\in[ ...
- Solution -「ZJOI 2019」「洛谷 P5326」开关
\(\mathcal{Description}\) Link. 有 \(n\) 个开关,初始时所有开关的状态为 \(0\).给定开关的目标状态 \(s_1,s_2,\cdots,s_n\).每 ...
- 洛谷 P3868 [TJOI2009]猜数字
题意简述 给定\(a[1],a[2],\cdots,a[n]\) 和 \(b[1],b[2],\cdots,b[n]\),其中\(b\)中元素两两互素. 求最小的非负整数\(n\),满足对于任意的\( ...
- 洛谷P2845-Switching on the Lights 开关灯
Problem 洛谷P2845-Switching on the Lights 开关灯 Accept: 154 Submit: 499Time Limit: 1000 mSec Memor ...
随机推荐
- E20180120-hm
derive vt. 得到,导出; 源于,来自; (从…中) 提取; hierarchy n. [计] 分层,层次; 等级制度; 统治集团; 天使的级别或等级; inheritance n. 继承 ...
- E20171121-sl
contrast n. 对比,对照; 差异; 对照物,对立面; [摄] 反差;
- bzoj 1770: [Usaco2009 Nov]lights 燈【高斯消元+dfs】
参考:https://blog.csdn.net/qq_34564984/article/details/53843777 可能背了假的板子-- 对于每个灯建立方程:与它相邻的灯的开关次数的异或和为1 ...
- jQuery多项选择器
jQuery多项选择器模式: $("selector1,selector2,selectorN"); 将每一个选择器匹配到的元素合并后一起返回,可以指定任意多个选择器,并将匹配到的 ...
- ACM_递推题目系列之一涂色问题(递推dp)
递推题目系列之一涂色问题 Time Limit: 2000/1000ms (Java/Others) Problem Description: 有排成一行的n个方格,用红(Red).粉(Pink).绿 ...
- Android 性能优化(25)*性能工具之「Systrace」Analyzing UI Performance with Systrace:用Systrace得到ui性能报告
Analyzing UI Performance with Systrace In this document Overview 简介 Generating a Trace 生成Systrace文件 ...
- SparkContext, map, flatMap, zip以及例程wordcount
SparkContext 通常作为入口函数,可以创建并返回一个RDD. 如把Spark集群当作服务端那Spark Driver就是客户端,SparkContext则是客户端的核心: 如注释所说 Spa ...
- javascript学习之Date对象
前几天学习了一下date对象,于是写了一个简单的时间显示放到博客页面里(位于右上角),类似这样的效果,时:分:秒 xxxx年xx月xx日. 下面来说一下具体实现步骤. 首先,既然date是一个对象,那 ...
- 利用eclipse调试JDK源码
先看效果图 综合网上各种教程,总结如下 新建 D:/jdk/src .D:/jdk/debug 目录 src存放源码 debug存放编译结果 将 %JAVA_HOME%/src.zip 解压到 D:/ ...
- Selenium 进行参数化
Selenium参数化分为大小: 小:list.dict.函数 大:txt.excel.mysql.redis 哪种方式使自己的工作简单高效就选那种!!! Selenium进行参数化有多种形式: 本文 ...