bzoj 1951: [Sdoi2010]古代猪文 【中国剩余定理+欧拉定理+组合数学+卢卡斯定理】
首先化简,题目要求的是
\]
对于乘方形式快速幂就行了,因为p是质数,所以可以用欧拉定理
\]
\]
因为p-1不是质数,所以把它质因数分解为2,3,4679,35617,最后用中国剩余定理合并即可。
#include<iostream>
#include<cstdio>
using namespace std;
const int p=999911659,N=50005;
int g,n,m[5],fac[5][N],t[5]={2,3,4679,35617};
int read()
{
int r=0,f=1;
char p=getchar();
while(p>'9'||p<'0')
{
if(p=='-')
f=-1;
p=getchar();
}
while(p>='0'&&p<='9')
{
r=r*10+p-48;
p=getchar();
}
return r*f;
}
int ksm(long long a,int b,int p)
{
long long r=1ll;
while(b)
{
if(b&1)
r=r*a%p;
a=a*a%p;
b>>=1;
}
return r;
}
int C(int n,int m,int x)
{
if(n<m)
return 0;
return fac[x][n]*ksm(fac[x][n-m]*fac[x][m],t[x]-2,t[x])%t[x];
}
int lucas(int n,int m,int x)
{
return !m?1:C(n%t[x],m%t[x],x)*lucas(n/t[x],m/t[x],x)%t[x];
}
void exgcd(int a,int b,int &x,int &y)
{
if(b==0)
{
x=1,y=0;
return;
}
exgcd(b,a%b,y,x);
y-=a/b*x;
}
int wk()
{
int a,b,x,y;
a=t[0],b=m[0];
for(int i=1;i<4;i++)
{
exgcd(a,t[i],x,y);
x=(((m[i]-b)*x)%t[i]+t[i])%t[i];
b=b+a*x;
a=a*t[i];
}
return b;
}
int main()
{
for(int i=0;i<4;i++)
{
fac[i][0]=1;
for(int j=1;j<=t[i];j++)
fac[i][j]=fac[i][j-1]*j%t[i];
}
n=read(),g=read();
if(g==p)
{
puts("0");
return 0;
}
g%=p;
for(int i=1;i*i<=n;i++)
if(n%i==0)
{
int now=n/i;
for(int j=0;j<4;j++)
{
if(now!=i)
m[j]=(m[j]+lucas(n,i,j))%t[j];
m[j]=(m[j]+lucas(n,now,j))%t[j];
}
}
printf("%d\n",ksm(g,wk(),p));
return 0;
}
bzoj 1951: [Sdoi2010]古代猪文 【中国剩余定理+欧拉定理+组合数学+卢卡斯定理】的更多相关文章
- BZOJ 1951: [Sdoi2010]古代猪文 [Lucas定理 中国剩余定理]
1951: [Sdoi2010]古代猪文 Time Limit: 1 Sec Memory Limit: 64 MBSubmit: 2194 Solved: 919[Submit][Status] ...
- BZOJ 1951: [Sdoi2010]古代猪文( 数论 )
显然答案是G^∑C(d,N)(d|N).O(N^0.5)枚举N的约数.取模的数999911659是质数, 考虑欧拉定理a^phi(p)=1(mod p)(a与p互质), 那么a^t mod p = a ...
- BZOJ 1951 [SDOI2010]古代猪文 (组合数学+欧拉降幂+中国剩余定理)
题目大意:求$G^{\sum_{m|n} C_{n}^{m}}\;mod\;999911659\;$的值$(n,g<=10^{9})$ 并没有想到欧拉定理.. 999911659是一个质数,所以 ...
- bzoj 1951 [Sdoi2010]古代猪文(数论知识)
[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=1951 [思路] 一道优(e)秀(xin)的数论题. 首先我们要求的是(G^sigma{ ...
- 【刷题】BZOJ 1951 [Sdoi2010]古代猪文
Description "在那山的那边海的那边有一群小肥猪.他们活泼又聪明,他们调皮又灵敏.他们自由自在生活在那绿色的大草坪,他们善良勇敢相互都关心--" --选自猪王国民歌 很久 ...
- bzoj 1951 [Sdoi2010]古代猪文 ——数学综合
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1951 数学综合题. 费马小定理得指数可以%999911658,又发现这个数可以质因数分解.所 ...
- BZOJ1951 [Sdoi2010]古代猪文 中国剩余定理 快速幂 数论
原文链接http://www.cnblogs.com/zhouzhendong/p/8109156.html 题目传送门 - BZOJ1951 题意概括 求 GM mod 999911659 M=∑i ...
- bzoj 1951: [Sdoi2010]古代猪文
#include<cstdio> #include<iostream> #include<cstring> #include<cmath> #defin ...
- BZOJ.1951.[SDOI2010]古代猪文(费马小定理 Lucas CRT)
题目链接 \(Description\) 给定N,G,求\[G^{\sum_{k|N}C_n^k}\mod\ 999911659\] \(Solution\) 由费马小定理,可以先对次数化简,即求\( ...
随机推荐
- 原 ELK+Filebeat集中式日志解决方案(centos7)
https://blog.csdn.net/bittersweet0324/article/details/78503961
- 分享一下然让显卡满血复活的小技巧(GTX)
分享一下然让显卡满血复活的小技巧 笔者在玩大型游戏卡顿15fps下载如下操作 GTX950玩大型游戏都不会卡帧率稳定在30fps 下载GeForce Experience下载更新最新驱动 下载如下程序 ...
- hybird app 用 xcode ios打包 ipa 测试包并且安装真机测试
1.创建 ios 项目 1.用 cordova 创建一个 ios 项目 npm install -g cordova cordova create hello com.mydomain.hello H ...
- 【转载】《Unix网络编程》思维导图
参考这篇文章,很不错: http://www.cnblogs.com/qiaoconglovelife/p/5734768.html
- LightRoom操作快捷键
1.隐藏与释放上下左右面板:F5.F6.F7.F8.分别对应上下左右面板.tab键可以隐藏与释放左右面板,shift+table可以同时隐藏与释放所有面板,T键隐藏与显示工具栏 2.图库与修改照片模块 ...
- android POI搜索,附近搜索,周边搜索定位介绍
POI搜索有三种方式.依据范围和检索词发起范围检索poiSearchInbounds.城市poi检索poiSearchInCity,周边检索poiSearchNearBy. 下以周边检索为例介绍怎样进 ...
- 有两个字符串a,b。假设a="ab",b="cd",判断字符串c="acbd"是属于a、b的组合。满足组合后a、b的内部顺序均不变。
#include<iostream> #include<string> using namespace std; int check(string a,string b,str ...
- 【教程】怎样申请Chrome应用商店(Web Store)开发人员
首先你须要一张信用卡,假设你没有的话.能够借用父母或他人的(多见于学生党) 假设你有信用卡.你还得看看信用卡正面是否有注明"VISA"."MasterCard" ...
- SQL Server索引原理解析
此文是我之前的笔记整理而来,以索引为入口进行探讨相关数据库知识(又做了修改以让人更好消化).SQL Server接触不久的朋友可以只看以下蓝色字体字,简单有用节省时间:如果是数据库基础不错的朋友,可以 ...
- 百度Fex webuploader.js上传大文件失败
项目上用百度webuploader.js上传文件,option选项里面已经设置单个文件大小,但是上传低于此阈值的文件时仍然不成功. 我现在的理解是,框架是将文件post到后台服务器端的.. 百度发现是 ...