题解报告:hdu 2588 GCD(欧拉函数)
Description
Input
The first line of input is an integer T(T<=100) representing the number of test cases. The following T lines each contains two numbers N and M (2<=N<=, 1<=M<=N), representing a test case.
Output
For each test case,output the answer on a single line.
Sample Input
3
1 1
10 2
10000 72
Sample Output
1
6
260
解题思路:∵GCD(X,N)>=M,X∈[1,N],∴GCD(X,N)一定是N的约数。假设我们已经知道N的一个约数为P(P>=M),则问题转换成在[1,N]内有多少个数X,满足GCD(X,N)=P(P假设是一个已知值),接下来就是枚举每个P(P>=M),累加每个P对应X的个数。但是对于每个不小于M的N的约数P去计算满足GCD(X,N)>=M的X的个数的情况可能比较复杂,需要考虑的情况比较多,简单的想法是:在[1,N]内用O(NlogN)的时间复杂度判断一下GCD(X,N)是否不小于M,但是题目中N最大为10^10,这肯定是超时的了。因此进一步推导:∵GCD(X,N)=P,∴GCD(X/P,N/P)=1(很明显X/P与N/P互质),又∵X<=N,∴X/P<=N/P,而问题是求X的个数,结合欧拉函数的定义可知即求不大于N/P且与其互质的数X/P的个数,即求ϕ(N/P)。对于N的每个约数P,我们只需从1枚举到根号N,因为N/P可得N的另一个约数(相当于枚举了N的所有约数),这样时间复杂度就大大降低了。
AC代码:
#include <iostream>
#include <cstdio>
#include <cstring>
#include <map>
#include <vector>
#include <set>
using namespace std;
typedef long long LL;
const int maxn = 1e6+;
const LL mod = ;
int T; LL n, m, ans;
LL get_Euler(LL x){
LL res = x; ///初始值
for(LL i = 2LL; i * i <= x; ++i) {
if(x % i == ) {
res = res / i * (i - ); ///先除后乘,避免数据过大
while(x % i == ) x /= i;
}
}
if(x > 1LL) res = res / x * (x - ); ///若x大于1,则剩下的x必为素因子
return res;
} int main(){
while(cin >> T) {
while(T--) {
cin >> n >> m; ans = 0LL;
for(LL i = 1LL; i * i <= n; ++i) {
if(n % i) continue; ///跳过不是n的约数
if(i >= m && i * i != n) ans += get_Euler(n / i); ///约数i不小于m,累加phi[n/i],如果i*i==n,只算一次即可
if(n / i >= m) ans += get_Euler(i); ///另一个约数n/i不小于m,累加phi[n/(n/i)]=phi[i]
}
cout << ans << endl;
}
}
return ;
}
题解报告:hdu 2588 GCD(欧拉函数)的更多相关文章
- HDU 2588 GCD (欧拉函数)
GCD Time Limit: 1000MS Memory Limit: 32768KB 64bit IO Format: %I64d & %I64u Submit Status De ...
- HDU 1695 GCD 欧拉函数+容斥定理 || 莫比乌斯反演
GCD Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...
- HDU 1695 GCD 欧拉函数+容斥定理
输入a b c d k求有多少对x y 使得x在a-b区间 y在c-d区间 gcd(x, y) = k 此外a和c一定是1 由于gcd(x, y) == k 将b和d都除以k 题目转化为1到b/k 和 ...
- HDU 1695 GCD (欧拉函数,容斥原理)
GCD Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total Submis ...
- hdu 1695 GCD (欧拉函数+容斥原理)
GCD Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...
- hdu 1695 GCD 欧拉函数 + 容斥
http://acm.hdu.edu.cn/showproblem.php?pid=1695 要求[L1, R1]和[L2, R2]中GCD是K的个数.那么只需要求[L1, R1 / K] 和 [L ...
- HDU 1695 GCD 欧拉函数+容斥原理+质因数分解
链接:http://acm.hdu.edu.cn/showproblem.php?pid=1695 题意:在[a,b]中的x,在[c,d]中的y,求x与y的最大公约数为k的组合有多少.(a=1, a ...
- [题解](gcd/欧拉函数)luogu_P2568_GCD
求gcd(x,y)=p等价于求gcd(x/p,y/p)=1,转化为了n/p内互质的个数 所以欧拉函数,因为有序所以乘2,再特判一下只有在1,1情况下才会重复计算,所以每次都减一 数组开小一时爽,提交w ...
- hdu2588 gcd 欧拉函数
GCD Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...
- Problem I. Count - HDU - 6434(欧拉函数)
题意 给一个\(n\),计算 \[\sum_{i=1}^{n}\sum_{j=1}^{i-1}[gcd(i + j, i - j) = 1]\] 题解 令\(a = i - j\) 要求 \[\sum ...
随机推荐
- openjudge1944 吃糖果
描述名名的妈妈从外地出差回来,带了一盒好吃又精美的巧克力给名名(盒内共有 N 块巧克力,20 > N >0).妈妈告诉名名每天可以吃一块或者两块巧克力.假设名名每天都吃巧克力,问名名共有多 ...
- ELK pipeline
https://www.felayman.com/articles/2017/11/24/1511527532643.html?utm_medium=hao.caibaojian.com&ut ...
- 思科CISCO 交换机命名规则
思科交换机的命名规则要比路由的命名规则复杂, 看下这些:WS-C2960-24TC-L .WS-C2950G-24-EI-DC .WS-C2960-24TT-L .WS-C3750G-24TS-E ...
- How to remote debug neutron
First of all, I will assume that you know how to use pydevd to remote debug normal python program. I ...
- 基于 Java 的开源网络爬虫框架 WebCollector
原文:https://www.oschina.net/p/webcollector
- 利用Python爬虫实现百度网盘自动化添加资源
事情的起因是这样的,由于我想找几部经典电影欣赏欣赏,于是便向某老司机寻求资源(我备注了需要正规视频,绝对不是他想的那种资源),然后他丢给了我一个视频资源网站,说是比较有名的视频资源网站.我信以为真,便 ...
- Samba完整篇 ubuntu 10.04
基本的服务器准备工作 修改Root密码 sudo passwd root 在提示下建立新密码 修改静态IP: sudo gedit /etc/network/interfaces #网络配置文件 ...
- 多路转接模型之poll
poll系统调用和select类似.也是在指定时间内轮询一定数量的文件描写叙述符,以測试当中是否有就绪者.poll和select效率差点儿相同,仅仅是其使用接口相对简单些,poll不在局限于1024个 ...
- Java RMI之HelloWorld程序以及相关的安全管理器的知识
Java RMI 指的是远程方法调用 (Remote Method Invocation).它是一种机制,可以让在某个 Java 虚拟机上的对象调用还有一个 Java 虚拟机中的对象上的方法.可以用此 ...
- Android 圆形/圆角图片的方法
Android 圆形/圆角图片的方法 眼下网上有非常多圆角图片的实例,Github上也有一些成熟的项目.之前做项目,为了稳定高效都是选用Github上的项目直接用.但这样的结束也是Android开发必 ...